
COVERN: A Logic for Compositional Verification of Information Flow Control

Toby Murray∗‡, Robert Sison†‡ and Kai Engelhardt†‡
∗School of Computing and Information Systems, University of Melbourne, Australia

Email: toby.murray@unimelb.edu.au
†School of Computer Science and Engineering, UNSW Sydney, Australia

Email: {robs,kaie}@cse.unsw.edu.au
‡Data61 (formerly NICTA), CSIRO, Australia

Abstract—Shared memory concurrency is pervasive in modern
programming, including in systems that must protect highly
sensitive data. Recently, verification has finally emerged as a
practical tool for proving interesting security properties of
real programs, particularly information flow control (IFC)
security. Yet there remain no general logics for verifying
IFC security of shared-memory concurrent programs. In this
paper we present the first such logic, COVERN (Compositional
Verification of Noninterference) and its proof of soundness
via a new generic framework for general rely-guarantee IFC
reasoning. We apply COVERN to model and verify the security-
critical software functionality of the Cross Domain Desktop
Compositor, an embedded device that facilitates simultaneous
and intuitive user interaction with multiple classified networks
while preventing leakage between them. To our knowledge this
is the first foundational, machine-checked proof of IFC security
for a non-trivial shared-memory concurrent program in the
literature.

1. Introduction

Concurrency is ubiquitous in modern programming.
Shared memory concurrency in particular remains an in-
dispensable programming paradigm, whether in traditional
programming languages like C and Java or in embedded
systems, which are often built as a collection of small con-
currently executing tasks or components that communicate
via shared memory and primitives provided by a minimal
operating system (OS) kernel.

For programs that handle sensitive data—a category that
is becoming ever larger—formal proof of information flow
control (IFC) security remains a gold standard of assurance
that they do not leak sensitive data to attackers. Recent
advances have seen entire microkernels such as seL4 [25] and
mCertiKOS [11] proved IFC secure, as well as conference
management systems like CoCon [18] and social media
platforms like CoSMed [4] amongst others. However, none
of these systems—with the exception of CoSMeDis [5], the
recently-verified distributed incarnation of CoSMed—are
concurrent, and none exhibit shared memory concurrency.
Whereas program logics for proving ordinary functional
correctness in the presence of shared memory concurrency

have seen great advances in the past decade [10], [13],
[20], [30], logics for proving IFC security have lagged
comparatively behind. Indeed, to our knowledge, there exist
no general purpose logics for proving IFC security of shared
memory concurrent programs.

We remedy this shortcoming in this paper by presenting
the first such logic, COVERN (Compositional Verification of
Noninterference) and its proof of soundness via a generic
framework for general rely-guarantee IFC reasoning. We
apply COVERN to model and verify the security-critical
functionality of the seL4-based software implementation of
the Cross Domain Desktop Compositor [6] (CDDC), an
embedded device that facilitates simultaneous and intuitive
user interaction with multiple classified networks while
preventing leakage between them. To our knowledge this is
the first foundational, machine-checked proof of IFC security
for a non-trivial shared-memory concurrent program in the
literature.

One might argue that the lack of general logics for
proving IFC security of concurrent programs is unsurprising:
for interesting programs, IFC security rests on their functional
correctness, and proving IFC cannot be done without also
proving that such programs are functionally correct. This
is especially true for programs that handle data whose
sensitivity is data-dependent [1], [22], [26], [28], [36], [37],
[39], [40]. When component B receives from component A
data d whose sensitivity is dictated by some data d ′ (whether
the current access control policy [25], scheduler state [26],
mode of operation [24] or a label embedded in the data d
itself [22]), B must correctly inspect d ′ if it is to handle d
securely. Thus B’s security crucially depends on its correct
functioning, and so cannot be reasoned about using (only)
traditional IFC reasoning techniques like security type sys-
tems [9], [23], [34], [38] that focus almost exclusively on
program structure.

In this sense, proving IFC security can be at least as
difficult as proving ordinary functional correctness. Carefully
reasoning about concurrent programs, and doing so com-
positionally (i.e. one-component-at-a-time), is necessarily
complicated by the fact that reasoning performed about
one component can be invalidated by the actions (e.g.
modifications to shared memory) of the other components
against which it executes concurrently [31]. After executing

mailto:toby.murray@unimelb.edu.au
mailto:robs@cse.unsw.edu.au

the assignment x := x + 1 shared variable x’s value has
increased (modulo overflow) only if no other component
has decreased it in the meantime. Compositional reasoning
therefore requires verifying each component under assump-
tions that it makes about the others (e.g. they won’t decrease
x’s value), on whom it relies to abide by those assumptions.
Such reasoning is sound only when each component provably
guarantees to abide by the assumptions made about it by all
others. This observation forms the essence of rely-guarantee
reasoning [17], which (implicitly) underpins [14] many
compositional concurrent program logics like concurrent
separation logics [10], [30] (CSLs).

CSLs have become the dominant method for composi-
tional reasoning about functional correctness of concurrent
programs. When used to reason about well-synchronised
locking programs, namely those in which locks are used to
protect access to shared data, basic CSLs operate as follows.
At all times, each lock is associated with a unique region of
the shared memory that it protects, via a shared data invariant
which can be thought of as a shared contract on the protected
data. Acquiring the lock not only grants access to the data it
protects, but also allows one to rely on the invariant holding
on the data. When releasing the lock, one must guarantee that
the invariant has been re-established (if it was violated in the
meantime). Thus these data invariants serve as contracts on
data that passes between concurrently executing components.
For example, the functional correctness of a component that
computes on shared integers a and b might rest on b being
non-zero (perhaps because it computes a/b). Thus b , 0
forms a natural shared data invariant, without which we
cannot prove the component functionally correct.

While necessary, shared data invariants on their own
are insufficient for verifying IFC security of concurrent
programs. When gaining access to shared data a component
must rely not only on the data having a correct value but
also having the expected sensitivity (which may depend on
other data, as noted above). In our program logic COVERN,
each shared variable (memory location) is assigned a value-
dependent classification, which should be thought of as a
shared contract specifying the sensitivity of the data held by
the variable in terms of the values of other program variables.
When acquiring access to a shared variable (by acquiring
the lock that protects it), one can assume that its sensitivity
matches its value-dependent classification. Likewise, when
releasing access to the variable, one is obliged to show that
the sensitivity of the data it (now) contains is consistent with
the variable’s classification. Thus value-dependent variable
classifications form the security analogue of data invariants
and, when paired with them, become a powerful tool for
describing and enforcing inter-component security contracts
on shared data.

COVERN and the general rely-guarantee framework on
which it is built and proved sound are formalised in Is-
abelle/HOL [29].1 The resulting metatheory alone constitutes
over 10,000 lines of proof script, not including a set of custom
tactics that ease its application. It operates similarly to a

1. The Isabelle theories are available at http://covern.org.

lock(`);
output := input;
unlock(`)

(a) Component code.

input
input clas

output
output clasC

(b) Component architecture.

Figure 1: A component C that copies labelled data.
Lock ` protects four variables: input, output, input clas,
and output clas, the latter two of which are not read or
written in the example component. The classifications of
the former two depend respectively on the values of the
latter two. This component is therefore secure only when
output clas = input clas.

traditional CSL by reasoning forward over the program text.
Like other CSLs [2], [3] it sometimes requires the user to
supply loop invariants and in some cases to supply a common
postcondition at the join point of if-statements. At present it
operates over a simple imperative language without pointers
and arrays, and so does not feature the traditional maps-
to predicate “7→” of CSL nor separating conjunction “∗”.
Adding these should be relatively straightforward, as the
underlying rely-guarantee framework is already sufficient to
talk about them. However, doing so is left as future work.

This paper is organised as follows. Section 2 provides
a high-level overview of COVERN and underlying rely-
guarantee framework. Section 3 then describes aspects of
the rely-guarantee framework in detail, including the choice
of compositional noninterference property that it establishes.
Section 4 discusses the logic and its proof of soundness atop
the rely-guarantee framework of Section 3, before Section 5
describes its application to the modelling and verification of
the CDDC. Section 6 summarises related work before we
conclude in Section 7.

2. Overview

Before introducing the logic COVERN, we first informally
motivate and describe the main ideas it embodies, and how
they interact to allow rich compositional verification of IFC
for concurrent programs.

2.1. Value-Dependent Classifications as Contracts

Figure 1a depicts a tiny but nonetheless illustrative
component in the simple imperative language of COVERN.
Imagine that this component runs alongside others. Its job
is to take input data from the shared variable input and
copy it to the shared variable output. Other components in
the system might modify these shared variables, so they
are protected by a lock `. Two other variables input clas
and output clas (not shown in the code in Figure 1a) are
also protected by the lock `. These variables are used to
label the sensitivity of the data in input, respectively, output.
For example, when some other component in the system
reads the output from output, it can inspect output clas
to learn the sensitivity of the data it has read in order to
handle it appropriately. Thus the two pairs of variables (input,

http://covern.org

input clas) and (output, output clas) should be thought
of as labelled input, respectively, output channels to the
component C shown in Figure 1. This architecture is depicted
in Figure 1b.

We formally define the association between input
and input clas (and similarly for output and output clas) by
assigning input a value-dependent classification. A variable’s
classification defines the maximum sensitivity of the data
that it is allowed to contain. A value-dependent classification
can refer to (i.e. may depend on the values of) other program
variables, allowing its valuation to change dynamically.
Suppose for simplicity that there exist just two sensitivity
levels Low (for non-sensitive data) and High (for sensitive
data that should not be revealed to attackers). Suppose
further for concreteness that input’s classification is defined
as being Low when input clas is zero and as High otherwise,
and likewise for output and output clas. Then at all times
e.g. output clas unambiguously indicates the (maximum)
sensitivity of the data in output.

Indeed, because all components in the system must
respect these value-dependent classifications, they form
natural security contracts on the sensitivity of the data
contained in the input and output variables. If e.g. some
other component wishes to update input’s value with a new
one that is more sensitive than input’s current classification,
it must also update input clas accordingly, to reflect input’s
new sensitivity.

2.2. Data Invariants for Compositional Security

So what then of the example component’s security? It
blindly copies data from input to output, heedless of the
data’s sensitivity and the current classifications of these
variables. In particular, if input clas is nonzero (meaning
that input might currently hold High data) but output clas is
zero (meaning that output is currently permitted to hold only
Low data), the component will cause a security violation: a
downstream component that subsequently reads both output
and output clas will erroneously conclude that output holds
only non-sensitive data, and so might write it to an attacker-
observable public output channel. This potential security
violation is manifest here in the form of a violation of
output’s security contract.

In fact, the security of the component in Figure 1 is predi-
cated on the assumption that output clas = input clas2. This
assumption is a trivial data invariant, which the component
implicitly assumes is true having acquired the lock `.

COVERN allows one to associate these kinds of data
invariants with locks, so that the lock is said to protect not
only a set of shared variables but also some relationship
between them. In the example in Figure 1, we associate the
invariant output clas = input clas with lock `. This allows
the invariant to be relied upon once lock ` is acquired, a
quid pro quo in exchange for guaranteeing that the invariant
holds at the point at which the lock is later released (thus

2. Technically, output clas = 0 −→ input clas = 0 is sufficient, but we
use the stronger equality for simplicity of exposition.

allowing the next component who acquires the lock to rely
on the invariant).

Thus data invariants are vital to compositionally verifying
rich concurrent programs, stating basic contracts on shared
data, in concert with value-dependent classifications, which
serve as security contracts on shared data.

Verifying a concurrent program proceeds by first defining
(usually static) classifications for its data sources and sinks.
Sources carrying sensitive inputs to the system that should
not be revealed to attackers must be classified High. Sinks
that are observable to potential attackers conversely must be
classified Low. This assignment defines the system’s overall
security policy. Verifying that its (concurrent) operation
indeed adheres to (or enforces) that policy then proceeds by
defining (often value-dependent) classifications for the shared
variables (like input, input clas, output and output clas)
that form the interfaces between the concurrently-executing
components of the system, along with appropriate data
invariants. If all components can be shown to respect all
such contracts, the system can be said to be secure. COVERN
is the first such logic to soundly capture these intuitions and
allow this style of verification.

2.3. An Overview of COVERN

COVERN derives inspiration both from CSLs (especially
the idea of associating shared variables and invariants with
locks) as well as from recent work on dependent security
type systems [27]. Like both, COVERN is geared towards
forwards reasoning over each component. Like all CSLs,
but unlike any previous rely-guarantee based security type
systems [23], [27], once each component has been verified,
no further work is required to conclude that the entire system
(i.e. all components running in parallel) is IFC secure.

COVERN allows locks to be used to protect variables to
differing degrees. For each variable v protected by a lock `,
the logic distinguishes between whether v is merely protected
from being modified by other components while ` is held, or
whether it is additionally protected from being read. Consider
the output variable in the example of Figure 1. Suppose this
variable represents an external data sink. In that case it might
not be reasonable to assume that a potential attacker won’t
be able to observe values written to this variable. In this
case, one would want to specify that lock ` protects this
variable from being modified while the lock is held but not
from being read. COVERN will then require that all values
written to the output variable while the lock is held match
its security contract. On the other hand, if output represents
an internal channel between this component and another
that will also be verified, then it might be reasonable to
say that acquiring lock ` also prevents other components
from reading this variable (which is not visible to attackers).
In that case COVERN allows any data to be written to the
variable while the lock is held, but at the time that the lock
is released one must show that whatever data remains in the
variable is consistent with its contract.

COVERN assumes a fixed finite set of locks Lock and
shared variables Var, and a static mapping lockvars from

locks to shared variables such that for each lock ` ∈ Lock,
lockvars(`) defines two mutually non-overlapping sets of
variables (NW, NRW) that are protected by `. Those in NW
(“no write”) are protected from being modified but not from
being read, while those in NRW (“no read-or-write”) are also
protected from being read. COVERN requires each shared
variable to be protected by a unique lock. Invariants are
associated with locks by the function lockinv that returns a
predicate given a lock `, such that lockinv(`) mentions only
variables from lockvars(`) (and so preventing the absurdity of
a lock attempting to protect an invariant over a variable that
it does not protect). In the example of Figure 1, we arbitrarily
choose the lock ` to protect both variables from being
both written to and read from, so we have: lockvars(`) =
({}, {input, input clas, output, output clas}) and lockinv(`) =
(output clas = input clas).

COVERN adapts [27]’s trick for encoding value-dependent
classifications. For the two-point lattice of security levels,
{Low,High} in which Low v High but High @ Low
(meaning that High sensitivity information should not flow
to Low-classified sinks), value-dependent classifications
on shared variables v ∈ Var are defined by a function
L, such that L(v) gives a predicate P. When P holds,
the classification is Low; otherwise it is High.3 Variables
such as input clas and output clas which determine the
classifications of other variables must be statically clas-
sified Low, to prevent covert channels by changes to
variable classifications. Thus in the example of Figure 1,
L(input clas) = L(output clas) = true (the predicate that
always holds), while L(input) = (input clas = 0) and simi-
larly L(output) = (output clas = 0).

COVERN tracks three pieces of information about the
local state of each component as it reasons over the com-
ponent’s program text. We denote these three pieces of
information Γ, L, and P. Like all CSLs, P is a predicate that
tracks what is currently true about the variables to which the
component has acquired access (by acquiring appropriate
locks). L in turn tracks the set of locks that have been
acquired, while Γ tracks the sensitivity of the data contained
in shared variables to which the component has acquired
access, and is a partial function from Var to predicates (i.e.
from shared variables to value-dependent classifications).
Thus program judgements in COVERN take the form:

Γ, L, P {c} Γ′, L′, P′ (1)

where c is a fragment of program text, Γ, L, and P capture
the state before c executes (a concurrency and security-aware
local precondition), while their counterparts Γ′, L′, and P′
capture the state after c has terminated (a corresponding
postcondition). Intuitively Equation 1 means that: (1) if
program c is executed from a state in which each shared
variable x tracked in Γ contains data whose sensitivity is
Γ(x), and (2) if each of the locks in the set L are currently
held by the component, and (3) if the predicate P is true of the
shared memory, then (4) if and when c terminates, (5) each

3. This can be extended to an arbitrary lattice by replacing these predicates
with functions that return an element of the lattice.

shared variable y tracked in Γ′ will have sensitivity Γ′(y),
(6) each lock in the set L′ will be held by the component
and (7) predicate P′ will hold.

Reasoning over each component starts knowing nothing:
Γ tracks no variables, L is empty and P is true. Each of
these is updated as reasoning proceeds forward over the
text of the component. When a lock ` is acquired, L is
naturally updated to become L ∪ {`}. However the logic also
augments Γ and P under the assumption that all contracts on
all shared variables x ∈ lockvars(`), protected by the lock,
hold. For each variable x ∈ lockvars(`), this means updating
Γ to assume that x’s sensitivity matches its value-dependent
classification, and so updating Γ to become Γ[x 7→ L(x)].
In the style of CSLs it also means updating P to assume the
invariant lockinv(`) protected by the lock `, updating P to
P ∧ lockinv(`).

In the example of Figure 1, after lock ` is acquired
the sensitivity of each variable is assumed to match its
classification: Γ(input) = (input clas = 0) and Γ(output) =
(output clas = 0); lock ` is known to be acquired:
` ∈ L; and the lock’s invariant is assumed to hold:
(output clas = input clas) is a conjunct of P.

At the point at which a lock ` is released, COVERN
requires one to prove that the values in all variables x ∈
lockvars(`) protected by the lock match their contracts.
This means proving that (1) the sensitivity of the data in
the variable Γ(x) is no greater than the variable’s value-
dependent classification L(x) (under the updated predicate P
that holds after the lock is released), and (2) that any data
invariants protected by the lock also hold (i.e. are implied
by P at the point at which the lock is released).

In the example of Figure 1, when lock ` is released,
output is known to hold data whose sensitivity is that of
input (due to the preceding assignment statement), and
so Γ(output) = (input clas = 0). Of course the lock
invariant still holds, since neither input clas nor output clas
have been modified while the lock has been held, so
(output clas = input clas) is a conjunct of P. Under this
equality, output’s sensitivity can be expressed equivalently
as Γ(output) = {output clas = 0}, in which case it is equal
to its value-dependent classification and so clearly consistent
with it. COVERN expresses this kind of reasoning by allowing
entries in Γ to be rewritten using information in P, an idea
we borrow from [27].

While not shown in this example, COVERN contains
rules for reasoning over if-statements, while-loops, and
assignments to variables like input clas and output clas that
define the classifications of other variables. We give a sample
of these rules later in Section 4.

COVERN is defined for a language in which we use shared
memory and locks as the sole means of communication
between components. Remote Procedure Call (RPC) style
communication can be modelled straightforwardly using
locks and shared memory, as can buffers/channels. Indeed
when modelling and verifying the software of the CDDC
(discussed later in Section 5), we did exactly that to reason
about inter-component communications implemented over
seL4 Inter-Process Communication (IPC).

lock(`);
low := 0;
while high > 0 do
abcdhigh := high - 1;
low := 1;
unlock(`)
(a) Timing insensitive secure.

output := low
(b) Timing insensitive secure.

Figure 2: Timing insensitive IFC is not compositional.

Before describing COVERN in detail in Section 4, we first
discuss the security property it establishes, in the next section.
This security property is a compositional noninterference
property that supports general rely-guarantee reasoning. Such
a general property is needed to express the kinds of reasoning
that COVERN performs in which variables can carry not only
security contracts (via value-dependent classifications) but
also functional correctness contracts (via data invariants).
While rely-guarantee frameworks for noninterference have
seen some recent attention (beginning with the seminal
work of [23]), all so far have supported only very limited
forms of rely-guarantee reasoning insufficient to justify
the preservation of data invariants across lock release and
subsequent re-acquisition. Nonetheless, many of the ideas in
the following section are heavily inspired by existing work
on which we build, chiefly that of [23], [24].

3. General Rely-Guarantee Reasoning for IFC

3.1. Defining IFC Security

COVERN reasons separately over each component of a
concurrent system in order to prove that the entire concurrent
composition is secure. To do so it establishes a compositional
security property: one that if true for each component of the
system establishes that the system as a whole is also secure.

The security property that COVERN proves is a timing
sensitive version of noninterference [16].4 Such a property
not only requires that the values written to Low-classified
variables do not depend on High sensitivity data, but also
that the times at which such Low variables are updated do
not depend on High data. In this sense, timing sensitive
security is a relatively stringent security property.

Consider the sequential program in Figure 2a. Suppose
the variables low and high are classified Low and High
respectively. This program satisfies timing insensitive IFC
security, since the values written to the Low-classified
variable low never depend on High data. However, it does
not satisfy timing sensitive security, since when the second
write to low is performed clearly depends on High data.

Now consider the trivial program in Figure 2b and
suppose that output represents a publicly observable output
channel of the system. On its own this program is obviously
secure under any definition since it is guaranteed to copy only

4. We discuss the issue of source level reasoning about execution time
later in Section 6.

Low data to the public output channel. However suppose
now that it runs concurrently alongside the code in Figure 2a
under a pre-emptive scheduler. Then the value it is likely
to write to the public output channel can be influenced by
High data: when high’s initial value is small, the value 1 is
more likely to be written to output; when high’s initial value
is very large, 0 is more likely to be written to output.5 Thus
even though both programs are timing-insensitive secure on
their own, their parallel composition is not.

The fact that timing-insensitive security is not compo-
sitional has been known since at least the late 1990s [38].
We recapitulate it here, however, to make it clear why we
require such a strong security property.

We can phrase timing-sensitive security as follows. In
this paper we give definitions in terms of concepts already
introduced in Section 2, namely locks for controlling assump-
tions about the possible actions of other components, in order
to ease exposition. In reality our rely-guarantee framework
is phrased generically and could be instantiated with any
other mechanism for controlling interactions between the
concurrently executing components. We refer the reader to
our Isabelle/HOL formalisation for the low level details.

We define the potential observations that an attacker6

might be able to make of the shared program memory mem
by defining an indistinguishability relation that relates all
pairs of memories mem1 and mem2 that the attacker cannot
distinguish. In our setting the attacker can observe all Low
variables except those currently protected from being read
because an appropriate lock is currently acquired. We also
consider all locks as implicitly statically classified as Low
since they naturally influence execution timing amongst
threads that contend on them. This is captured as follows.
Definition 1 (Low Equivalence). Two memories mem1

and mem2 are said to be low equivalent (written
mem1 ' mem2) if the same set of locks are currently
acquired in both and if mem1(x) = mem2(x) for all Low-
classified variables x, except those that some component
is currently assuming will not be read (because it has
acquired some lock ` for which x ∈ NRW, where
lockvars(`) = (NW,NRW)).

Timing-sensitive IFC security can then be defined thus.
Definition 2 (Timing-Sensitive Security). Program c is

timing-sensitive secure if, for all n, when executed from
any initial memory memory mem1 for n execution steps,
it results in some memory mem′1, then a correspond-
ing execution from an initial memory mem2 satisfying
mem1 ' mem2 can also run for n steps to reach a
memory mem′2 satisfying mem′1 ' mem′2.

Observe that the program in Figure 2a doesn’t satisfy this
definition, since if it runs from two initial low equivalent
memories, the time at which the second assignment to low

5. A probabilistic argument is not necessary; one can also consider all
deterministic schedulers.

6. An attacker here could be an external adversary observing the system
or an internal component that might leak secrets to an external adversary.
From the perspective of compositional reasoning, these are largely the same.

will occur can differ and at this point of difference, having
run for the same number n of execution steps, the resulting
memories will not be low equivalent.

3.2. Proving IFC Security

How does COVERN establish this kind of property for
each component? What kind of evidence must be produced
to show that timing sensitive security holds? We follow the
prior work of [23], [24] which we augment to support general
rely guarantee reasoning. At its core, we need to show that
if two executions beginning from low equivalent memories
take one step each, then the resulting memories are still low
equivalent, and then if they take a further step each, the
resulting memories remain low equivalent, and so on. To do
so, we must establish a relational invariant B that relates
states between two executions of the program (beginning
from low equivalent memories), that is always preserved after
both make a single execution step, and always guarantees low
equivalence. Then timing sensitive noninterference follows
by induction on the number of execution steps n from
Definition 2. The rules of COVERN, which we present
in Section 4, effectively establish such an invariant: the
soundness proof for the logic is a constructive proof that
such a B exists whenever the rules are used to prove that a
component is indeed secure.

Let s denote the semantic state of a component. This
includes both the component’s local state (e.g. program text
remaining to be executed) as well as the shared memory to
which all components have access, which we denote mem(s).
Following [23] we refer to these relational invariants B as
strong low bisimulations, defined as follows.
Definition 3 (Strong Low Bisimulation). A symmetric

relation B on pairs of component states (s1, s2) is called
a strong low bisimulation when it (1) relates all low
equivalent initial states, (2) is preserved on a single
execution step, so that if s1 B s2 and s1 makes a single
execution step then s2 can also make a single execution
step so that they respectively result in states s′1 and s′2 for
which s′1 B s′2, and (3) guarantees low equivalence, so
that for all states s1 B s2 we have mem(s1) ' mem(s2).

3.3. General Rely-Guarantee Reasoning

A strong low bisimulation can be thought of as the
noninterference analogue of an ordinary concurrent program
invariant. If we have established such an invariant for each
component of our concurrent program, how do we know
that when we run the components in parallel that they won’t
violate each other’s invariants? Doing so would invalidate the
reasoning about each of them, leading to potential insecurity
in the concurrent program. As a trivial example, suppose
one component contains code like the following:
x := 0 ; if x ≥ 0 then low := 0 else low := high
This code sets shared variable x to zero, but then might
behave insecurely if x has negative value when examined in
the following if-statement. An invariant that states that x ≥ 0

at the time of the test of the if-statement is certainly valid
for this program in isolation, and would be sufficient to
prove it secure in isolation. However, if the program is run
concurrently with another that decreases the value of x in
between when it is assigned and subsequently tested, then
the invariant will be violated, leading to potential insecurity.

Traditional rely-guarantee reasoning [17] deals with this
problem as follows. It requires verifying the component
under a rely condition R (which may change throughout the
program’s execution). Such a condition is simply a (reflexive,
transitive) relation on pairs of memories mem and mem′.
Rather than relating pairs of memories from two program
executions, however, a rely condition relates memories from
a single execution and encodes assumptions on how other
components in the system might alter the memory. In partic-
ular, for any such alteration from memory mem to produce
a memory mem′, the assumption is that mem R mem′. So
if a component is to be verified under the assumption that
other components in the system will never decrease the
value of shared variable x, this can be encoded by the rely
condition R that relates all pairs of memories mem and mem′
for which mem′(x) ≥ mem(x). To prove that some invariant
established about a component won’t be violated by the
actions of other components, it then suffices to show that if
the invariant holds for any memory mem, it also holds for
any memory mem′ for which mem R mem′.

How do we prove that a component’s rely condition is
sound, i.e. that it will be adhered to by the other components?
Rely-guarantee reasoning does so by verifying each compo-
nent not only under a rely condition R capturing its current
assumptions about how the other components in the system
might modify the shared memory, but also a guarantee
condition G. Like R, G is a relation on memories mem
and mem′, and describes a guarantee that the component that
is being verified is making about its own behaviour, namely
that its own modifications to the memory mem to produce
memory mem′ are related by G. For example, to guarantee
that shared variable x won’t be modified, a component could
use the guarantee relation G that relates all memories mem
and mem′ for which mem′(x) = mem(x). Naturally, when
verifying the component we must show that each step of its
execution adheres to its guarantee relation. In this paper we
call this guarantee compliance.

This kind of reasoning composes soundly, of course,
only when at all times, for each pair of components, one’s
guarantee condition G is no weaker than the other’s rely
condition R. In the above example, the guarantee condition
stating that x won’t be modified is naturally stronger than the
rely condition that its value will not be decreased, and so is
sufficient to establish it. In this case we say that the rely and
guarantee conditions are compatible. Sound rely-guarantee
reasoning requires that at all times each pair of components’
rely and guarantee conditions are compatible with each other.

3.4. General Rely-Guarantee for IFC

Our rely guarantee framework applies these same general
ideas to produce a compositional timing-sensitive nonin-

terference condition. Unlike prior rely-guarantee work for
noninterference, ours is the first to incorporate arbitrary rely
and guarantee relations R and G as described above. Such
is needed to encode the preservation of data invariants in
between when a lock is released and then subsequently
acquired; we couldn’t prove COVERN sound without them.

Specifically, our framework associates rely and guarantee
conditions R and G with each component, that can change
throughout its execution. We then require that (1) each
component’s strong low bisimulation B is preserved under
the component’s rely condition, that (2) its own execution
adheres to its current guarantee condition G, and that (3)
rely and guarantee conditions remain compatible between
components when they are run in parallel. Under these
requirements, timing sensitive security can be shown to be
compositional.

We augment the semantic state s of each component with
ghost information that includes rely and guarantee conditions,
which we denote R(s) and G(s) respectively. We strengthen
the definition of low equivalence, s1 ' s2, to assert that
R(s2) = R(s1) and G(s2) = G(s1) (to avoid the paradox in
which an apparently secure component is allowed to change
its assumptions or guarantees about other components based
on High information). We then require that the component’s
strong low bisimulation B is closed under its rely condition,
defined as follows, which formally captures what it means
for B to be preserved under R.
Definition 4 (Closed Under Rely Condition). A component’s

strong low bisimulation B is closed under its rely
condition when for any states s1 and s2 related by B, if
their memories are modified respectively in accordance
with R(s1) (which is equal to R(s2) by the definition
of low equivalence and strong low bisimulation), then
the resulting states are still related by B. Formally, for
any states s′1 and s′2 that are identical to s1 and s2
respectively except for their memories for which we
require mem(s1) R mem(s′1) and mem(s2) R mem(s′2), it
must be the case that s′1 B s′2.

Guarantee compliance, stating that each execution step of a
component adheres to its current guarantee condition (condi-
tion (2) above) is straightforwardly defined by quantifying
over all locally reachable states of each component. These
are those states that can be reached by the component while
allowing intermediate memory updates in between each
of its execution steps in accordance with its current rely
condition R. We omit the formal definition in the interest of
brevity and instead refer the reader to our Isabelle theories;
the intuition is however that locally reachable states are all
possible states that the component might reach if run in
parallel with other components that offer no more than the
minimally required guarantees. In this sense it is an upper
bound on all reachable states of the component when run in
parallel with others that respect its assumptions.

Guarantee compliance then requires that in all such
locally reachable states, if the component modifies the
memory mem to produce memory mem′, then mem G mem′,
where G denotes its current guarantee condition.

Definition 5 (Guarantee Compliance). A component satis-
fies guarantee compliance when for all locally reachable
states s of the component, if the component performs
a single execution step resulting in a state s′, then
mem(s) G mem(s′).

Condition (3), requiring that at all times all rely and guarantee
conditions are compatible between components, we define as
follows. We let σ denote states of the parallel composition of
a set of components, under the usual interleaving semantics.
States σ include the shared memory mem(σ), as well as the
local state of each component i, including its current rely and
guarantee conditions, which we denote Ri (σ) and Gi (σ)
respectively.
Definition 6 (Rely-Guarantee Compatibility). The rely and

guarantee conditions of a collection of components
running in parallel are said to be compatible when in
all reachable states σ of the concurrent system, for
all pairs of distinct components i and j, we have that
Ri (σ) ⊇ G j (σ).

3.5. No-Read Assumptions and Guarantees

Standard rely-guarantee conditions R and G for verifying
functional correctness of concurrent programs [17] capture
assumptions and guarantees only about how memory will
be modified. However, recall that COVERN also allows locks
to protect variables from being read. Specifically, while a
component holds a lock `, COVERN allows it to assume that
no other component will read from any variable v ∈ NRW
where lockvars(`) = (NW,NRW) (see Section 2). Indeed,
that such variables are assumed unreadable was encoded in
the definition of low equivalence (Definition 1).

This kind of assumption is not part of standard rely
guarantee reasoning for functional correctness, and was
a novel invention of [23] in their initial rely guarantee
framework for noninterference. We briefly explain its role,
which we inherit from [23], [24], in our framework.

For a state s of a component, let ANRW (s) (“assume
no read-or-write”) denote the set of variables for which
the component currently has a no-read assumption. (In the
context of COVERN, if the component has currently acquired
all locks in the set L, this set of variables is

⋃
{ NRW | ` ∈

L∧ lockvars(`) = (NW,NRW) }.) We also allow components
to specify the variables they are currently guaranteeing not
to read, denoted GNRW (s). Then, overloading our existing
notation to states σ of the parallel composition of a set of
components, we augment the definition of rely-guarantee
compatibility (Definition 6) to require that at all times for
distinct components i and j that GNRW i (σ) ⊇ ANRW j (σ).

To express that each component adheres to its own
no-read guarantees, we strengthen the notion of guarantee
compliance to require that each execution step from a
locally reachable state s does not depend on any variables
in GNRW (s). Following [27], this is captured formally via
an erasure-like condition that says that the operations of
(a) modifying all variables in GNRW (s) arbitrarily and (b)
performing the execution step commute, implying that the

execution step cannot depend on the values of any such
variables. As an aside, these kinds of erasure conditions have
also been used to specify noninterference style security for
functional programming languages, following [21], [32].

Incorporating no-read assumptions into standard rely-
guarantee reasoning raises an interesting question. What does
it mean if one component i makes a no-read assumption
on a shared variable x, at the same time that some other
component j’s rely condition Rj constrains the value of x?
For example, suppose Rj is such that for all memories
mem Rj mem′, it is the case that mem(x) = 3. Component j
thus has implicit knowledge about x’s value through its rely
condition, violating component i’s no-read assumption.

This turns out not only to be an interesting thought exper-
iment, but also to violate compositionality. To remedy this,
we strengthen the definition of rely-guarantee compatibility
further to require that at all times if one component has
a no-read assumption on a shared variable, then no other
component’s rely condition can constrain x’s value. Without
this requirement, which we have motivated intuitively above,
the rely-guarantee reasoning fails to compose. We leave it
for future work to investigate whether there are other ways
of achieving this kind of composition.

3.6. Compositionality

We can now formally state the compositionality theorem
for our general rely-guarantee framework.
Theorem 1. Given a set of components running in parallel,

and a strong low bisimulation Bi for each such compo-
nent i, then the parallel composition of the components
satisfies timing sensitive security (Definition 2) when:
(1) each Bi is closed under the component’s rely condi-
tion (Definition 4), (2) each component complies with
its own guarantees (Definition 5) and, in the concurrent
composition, all rely and guarantee conditions between
components are compatible (Definition 6), where each
of these definitions is strengthened as described above.

The machine checked proof of this theorem, whose presenta-
tion here is somewhat simplified for exposition, constitutes
on its own about 2.5K lines of proof script, and follows the
structure of prior compositionality proofs for more restrictive
rely-guarantee notions of noninterference [23], [27].

3.7. Integration with COVERN

We conclude this section by describing how this rely-
guarantee framework underpins and integrates with COVERN.
In particular, when reasoning about each component, the rules
of COVERN not only guarantee that a suitable strong low
bisimulation B exists, but also that the side conditions of
Theorem 1 are met.

Rely-Guarantee Compatibility. A component’s rely and
guarantee conditions naturally change throughout its exe-
cution. For instance, when acquiring a lock that protects
a shared variable x, the component is allowed to assume

that others won’t modify x until such time as it releases the
lock; likewise until it acquires the lock it should provide a
corresponding guarantee to the others that it won’t modify x.
If rely and guarantee conditions can change dynamically, how
can we ensure that at all times every component provides a
sufficient guarantee condition to establish the rely condition
of all others?

Just as locks provide the source of dynamically changing
rely and guarantee conditions, they also provide the solution
for making sure they stay compatible between components.
Specifically, COVERN instantiates the rely and guarantee con-
ditions as follows. At any time, each component guarantees
not to modify any variable protected by any lock that it has
not currently acquired, and likewise for variables protected
from reading. The component also guarantees not to release
any lock that it has not itself acquired. Rely conditions
are instantiated so that each component i relies on other
components not modifying any variables for which i has
acquired a lock, and similarly for read-protected variables for
which i has acquired an appropriate lock. Each component
also relies on other components not to release any lock that
it has itself acquired.

Then so long as each lock can be acquired by only one
component at a time (a property guaranteed by the language
semantics), then these rely and guarantee conditions can
be shown to always remain compatible. All that remains
for COVERN to check, to ensure compatibility, is that each
component always adheres to its current guarantee relation,
by never modifying (respectively modifying or reading) a
variable it hasn’t acquired a lock for and never releasing a
lock it hasn’t acquired.

Note that rely-guarantee compatibility in the presence of
no-read assumptions also requires that all rely conditions are
ignorant of any variables for which some other component
has a no-read assumption. COVERN also ensures this by
construction, which we explain shortly.

Data Invariants. COVERN’s data invariants are incorpo-
rated straightforwardly via the general rely and guarantee
conditions as well. We define a global invariant global inv
on the shared memory that asserts that for every lock `
that is not currently acquired by some component, its
invariant lockinv(`) must hold.
Definition 7 (Global Invariant). Memory mem satisfies the

global invariant, denoted global inv(mem), when for all
locks ` not acquired by some component in memory mem,
lockinv(`)(mem) holds.

We then simply augment each component’s rely and guar-
antee conditions to include the assumption and guarantee
respectively that this global invariant is always preserved, so
that they relate only those memories mem and mem′ such
that if global inv(mem) holds then global inv(mem′) must
also hold. Thus at the point at which a lock ` is acquired
(meaning that the lock is not currently held), the global
invariant implies that lockinv(`) must be true. By forcing
each component to ensure that the invariant remains true
when the lock is released, COVERN guarantees that the global
invariant is always preserved.

No-Read Assumptions. As mentioned above, COVERN
instantiates the rely and guarantee conditions in a way that
ensures that rely conditions are ignorant of no-read variables
by construction. In particular, since the global invariant
global inv asserts only those data invariants for locks not
currently held, it never constrains the values of any variable
that some component might be holding a lock for, and so can
never constrain any variables that some component might
have a no-read assumption for.

Value-Dependent Classifications. So far we have avoided
mentioning value-dependent classifications in this section,
which we introduced in Section 2. As noted by [24],
incorporating these into rely guarantee reasoning requires
extending no-read assumptions on a variable x to also cover
any variable y on which x’s classification L(x) depends.

COVERN handles this by requiring that for all locks `,
if lockvars(`) = (NW,NRW), letting X denote either of the
sets NW or NRW, then a variable x is present in X if and
only if a variable y mentioned in L(x) is present in X .
Thus one cannot acquire access to a variable without also
acquiring the same access to those variables that control its
classification, and vice versa.

4. The COVERN Logic

Section 2. Here we take the time to carefully give a
flavour of some of its rules; however we defer to our Isabelle
theories for the full details.

COVERN is defined over a simple imperative language,
whose current grammar is as follows. A command cmd in
the language is one of

cmd ::= skip | cmd ; cmd | if e then cmd else cmd |
while e do cmd | x := e |
lock(`) | unlock(`)

where e is an expression on shared variables, x ∈ Var
is a shared variable, and ` ∈ Lock is a lock. Commands
include no-ops (skip), sequencing (;), if-statements, while-
loops, assignments to shared variables (x := e) and lock
acquisition (lock(`)) and release (unlock(`)).

Since this language supports neither pointers nor arrays,
identifying which parts of the shared memory are referenced
by an expression e or a variable assignment x := e is trivial.
Thus as mentioned in Section 1, while it borrows many ideas
from concurrent separation logic (CSL), COVERN currently
eschews CSL’s maps-to (“7→”) predicate and its separating
conjunction (“∗”). However extending COVERN’s language
with pointers and arrays and incorporating these additional
CSL ingredients should be relatively straightforward since
the rely-guarantee framework already explicitly encodes heap
footprints and (while not used in COVERN) already has the
ability to reason about language commands for which the
region of shared memory that they might read or write might
itself depend on values in the shared memory.

Figure 3 presents those COVERN rules that we have
found most useful so far. Some of these rules, like SKIP
and SEQ for reasoning about no-ops and over sequences of

commands are straightforward analogues of their traditional
Hoare logic counterparts. Others, like ASSIGNC are inspired
by the dependent security type system of [27] and bear close
resemblance to similar rules there.

Lock Acquisition and Release. We begin by explaining
the LOCKACQ and LOCKREL rules for reasoning over lock
acquisition and release, where COVERN’s novelty shines. The
LOCKACQ rule states that after acquiring a lock `, one can
assume the lock invariant lockinv(`) holds, and that lock `
is now known to be acquired. The notation Γ ⊕ ` denotes
updating the context Γ which we recall tracks the sensitivity
of the data contained in variables to which the component
has acquired access. In particular, Γ is updated by adding
entries for all variables x ∈ lockvars(`) that are protected by
the newly-acquired lock, such that for each variable x we add
an entry x 7→ L(x) that records that x’s sensitivity matches
its classification. This captures the idea that when acquiring
access to a variable, one is allowed to assume its security
contract, namely that the sensitivity of the data it contains
is no greater than its (value-dependent) classification.

The corresponding rule LOCKREL for releasing a lock `
must first check that the lock is one that has already been
acquired (i.e. that ` ∈ L). It is safe to release the lock only if
its lock invariant has been re-established (if it was violated
in the meantime). Therefore, the rule checks that the facts P
known about the current state are sufficient to prove that
the lock invariant lockinv(`) holds, denoted by the predicate
entailment judgement P ` lockinv(`). The notation Γ 	 ` de-
notes removing from Γ entries for all variables in lockvars(`)
protected by the lock, since once the lock is released these
assumptions about the sensitivity of the data that they might
contain could be invalidated if another component acquires
access the lock `. Likewise, all predicates mentioning these
variables have to be removed from P, which we denote by
the overloaded notation P 	 `. Finally the rule includes an
additional side condition, abbreviated side condition.

Before explaining the side condition, recall that under
value-dependent classification, certain variables effectively
control the classifications of other variables. For instance in
the example in Figure 1 of Section 2, the variable input clas
defines the classification of the variable input. Recall that
these value-dependent classifications are captured by the
static function L, from variables to predicates on other
variables. We call variables like input clas control variables,
since they control the classifications of other variables.
Following [27], from which COVERN largely inherits its
support for value-dependent classification, we denote the set
of all such control variables C. C naturally contains precisely
those variables mentioned in the L of another variable, i.e
C =
⋃

x∈Var (vars(L(x))), where for an expression e, vars(e)
denotes the variables mentioned in e.

The first job of side condition is to check that when
we release access to a variable x protected by the lock,
that its sensitivity matches its security contract, i.e. that
the sensitivity of the data that x contains (Γ(x)) does not
exceed x’s value-dependent classification L(x). This check
has to be made relative to the information known still to

be true about the memory once the lock is released, i.e.
under the assumption that all predicates in P′ hold, since
it needs to be true after the lock is released. Given two
value-dependent classifications t and t ′, we denote that t
does not exceed t ′ under the assumption that the predicates
in some set Q hold, by t ≤Q t ′. Therefore the main check
performed by side condition is that for all x ∈ lockvars(`),
Γ(x) ≤P′ L(x).

The side condition must perform one additional check
that we explain as follows. Consider the example from
Section 2 and what would happen if Γ contained information
about the sensitivity of a variable in terms of input class,
but we released the lock that was protecting input clas’s
value. Doing so would allow some other component to
potentially change input clas’s value, thereby invalidating
the information we have in Γ. Therefore, the side condition
also checks that the lock ` being released does not protect a
control variable that is mentioned by an entry in Γ.

Variable Assignments. Figure 3 contains two of COVERN’s
rules for variable assignments. The rule ASSIGN1 is for
reasoning about assignments to variables to which the
component has acquired access (by acquiring an appropriate
lock) that are not control variables. Conversely, the rule
ASSIGNC is for reasoning about changes to control variables.
Such updates must be handled very carefully, since they
can necessarily alter the classification of other variables. For
instance, changing a variable’s classification from High to
Low, without first clearing out any High data that it might
contain, will violate the variable’s (updated) security contract.

We focus on the ASSIGN1 rule. This rule requires that the
variable x being assigned to is one to which access has been
acquired by acquiring a lock ` ∈ L for which x ∈ lockvars(`),
which we denote modifiableL (x). Likewise the rule has to
check that no variable is being read to which access has
not been legitimately acquired (which is required to ensure
guarantee compliance, from Section 3). This check applies
to all variables mentioned in the expression e, which we
denote readableL (e). The expression sensitivity judgement
Γ ` e : t states that the sensitivity of the data in expression e
is at most t (a value-dependent classification). Notice that
the rule updates Γ to track x’s new sensitivity as t, following
the assignment. Doing so makes sense, however, only if all
variables mentioned by t are stable, by which we mean
assumed not-writable (because a lock ` ∈ L has been
acquired for them). We denote this condition stableL (t). The
rule computes a weakening P′ of the strongest postconditon
of the assignment x := e with respect to precondition P by
avoiding all references to variables not guaranteed to be
stable by L. Finally, the rule has to check that if x is a
variable to which we do not hold a no-read assumption, by
having acquired an appropriate lock ` ∈ L (which we denote
x < NRW (L)), that the data being written to it (expression e,
whose sensitivity is given by t) does not violate x’s security
contract (L(x)), i.e. that t does not exceed L(x).

The rule ASSIGNC for updating control variables
(those x ∈ C) is similar, but performs some extra checks.
It must check that the control variable is being updated

only with Low data, to prevent covert channels arising from
changes to variable classifications [27], and also that any
information in Γ won’t be invalidated by the change, by
checking that Γ mentions no classifications mentioning x.
Finally, the secure update side condition abbreviates a check
that when we change a control variable x, all variables y
that x controls for which we don’t have a no-read assumption
on y cannot be made insecure. This means that those y
currently hold Low data, and after the control variable x is
updated the data they hold (whose sensitivity might have
changed) cannot exceed their type classification L(y) (which
might also have changed).

Reasoning about Compound Statements. The rule WHILE
for reasoning over while loops is the IFC analogue of the
traditional while loop rule from Hoare logic. The rule IFLOW
for reasoning over if-statements is similar, in that it reasons
over each of the branches under the assumption that the
condition e is true and false respectively. However, because
COVERN performs forward reasoning, like existing separation
logics [2], [3], it requires the user to supply a common
postcondition at the join point of the if-statement, that is
compatible with the postconditions derived on each of the two
branches. This compatibility includes not only equivalence
of value-dependent variable sensitivities tracked by Γ, and
entailment between predicate sets P, but also preservation
of internal well-formedness constraints between the three
contexts Γ, L and P, which we denote using the ≤ symbol for
brevity. In practice, one can derive more specialised forms
of the IFLOW rule that can automatically derive suitable
common contexts and discharge the compatibility checks;
we refer the reader to our Isabelle formalisation.

4.1. Soundness

The soundness theorem for COVERN and its proof
comprise about 6.5K lines of Isabelle/HOL, at most a few
hundred of which define the logic itself. The theorem states
that if one uses the rules of the logic to prove a set of
components secure, then the parallel composition of those
components satisfies timing sensitive noninterference. The
proof proceeds by establishing a bisimulation B for each
component and showing that all such meet the side conditions
of Theorem 1.

Proving a component secure using COVERN starts with
the empty contexts Γ0, L0, and P0, each of which contain no
information, so dom(Γ0) = {}, L0 = {} and P0 = true. Then
the soundness theorem is:
Theorem 2 (Soundness of COVERN). Given components

ci and contexts Γi , Li , and Pi , for i = 1, . . . , k, such
that Γ0, L0, P0 {ci } Γi, Li, Pi the components running in
parallel satisfy timing sensitive noninterference.

4.2. Discussion

Observe that each of the rules of Figure 3 essentially
performs two kinds of checks: those that preserve security (of-
ten categorised as comparisons between variable/expression

modifiableL (x) readableL (e) Γ ` e : t stableL (t)
P′ = postL (x := e, P) x < NRW (L) −→ t ≤P′ L(x)

Γ, L, P {x := e} Γ[x 7→ t], L, P′
ASSIGN1

x ∈ C modifiableL (x) readableL (e) Γ ` e : t t ≤P Low
(∀v ∈ dom(Γ). x < vars(Γ(v))) P′ = postL (x := e, P) secure update

Γ, L, P {x := e} Γ′, L, P′
ASSIGNC

readableL (e) Γ ` e : t t ≤P Low Γ, L, (P ∧ e) {c1} Γ1, L′, P1 Γ, L, (P ∧ ¬e) {c2} Γ2, L′, P2
Γ1 =P1 Γ

′
Γ2 =P2 Γ

′ P1 ` P′ P2 ` P′ (Γ1, L′, P1) ≤ (Γ′, L′, P′) (Γ2, L′, P2) ≤ (Γ′, L′, P′)

Γ, L, P {if e then c1 else c2} Γ
′, L′, P′

IFLOW

readableL (e) Γ ` e : t t ≤P Low Γ, L, (P ∧ e) {c} Γ, L, P

Γ, L, P {while e do c} Γ, L, P
WHILE

Γ, L, P {c1} Γ
′, L′, P′ Γ

′, L′, P′ {c2} Γ
′′, L′′, P′′

Γ, L, P {c1 ; c2} Γ
′′, L′′, P′′

SEQ
Γ, L, P {skip} Γ, L, P

SKIP

Γ
′ = Γ ⊕ `

Γ, L, P {lock(`)} Γ′, L ∪ {`}, (P ∧ lockinv(`))
LOCKACQ

` ∈ L P ` lockinv(`) Γ
′ = Γ 	 ` P′ = P 	 ` side condition

Γ, L, P {unlock(`)} Γ′, L − {`}, P′
LOCKREL

Figure 3: Commonly used rules of COVERN.

sensitivities and classifications), and those that ensure that
the component is complying with its own guarantees, as
captured via the set of locks L currently acquired.

Unlike prior security type systems built on top of rely-
guarantee frameworks for noninterference, COVERN is the
first to not only establish suitable bisimulations for each
verified component, but also to simultaneously establish
the other side conditions of the associated compositionality
theorem (which we note in our case are even more involved
than their predecessors because we support general rely
guarantee reasoning for the first time).

While the rules in Figure 3 are currently restricted
to reasoning only about programs that do not branch on
High data, we note that the set of such programs has
increased dramatically in recent years as the danger of secret
dependent memory accesses has become apparent through
ever more sophisticated cache side channel attacks [15] on
cryptographic implementations, via the rise of “constant
time” crypto libraries like NaCl [7], [8], [12]. Indeed, the
Cross Domain Desktop Compositor (CDDC) software whose
modelling and verification we discuss in Section 5 also
avoids secret dependent memory accesses. For these reasons
COVERN remains useful even without additional rules to
reason over if-conditions that branch on High data.

Nonetheless, adding such rules should be straightforward.
In particular, one can imagine a rule that when encountering
a potentially High conditional if e then c1 else c2 first

checks that the lengths of the two branches c1 and c2 are
identical, ensuring (at least to the level of the source language
semantics) that the two branches take the same number of
steps to execute. The rule would then fire additional ones
to check over each branch separately to make sure that any
variables being assigned to that are not protected from being
read by an appropriate lock are High classified. We leave
adding these kinds of additional rules for future work.

5. Modelling and Verifying the CDDC

The Cross Domain Desktop Compositor [6] (CDDC)
is a security-critical device that allows a single trusted
user to interact with multiple desktop machines, each of
which might be connected to a network of differing security
classification, via a single keyboard, video display (monitor)
and mouse. It is designed to provide the separation guarantees
of physical isolation between the networks while at the same
time affording a seamless user experience.

The CDDC receives video input from each of the desktop
machines (see Figure 4a) and composites the various display
elements onto a single screen to provide an integrated user
experience. Window geometry information is communicated
in-band in the video signal from each of the desktop
machines, which is necessary because the only output channel
from the desktop machines to the CDDC is via the video
display output. Likewise the CDDC receives input from the

(a) CDDC hardware use-case setup. (b) CDDC hardware architecture. (c) CDDC seL4 component architecture.

Figure 4: Cross-domain desktop compositor functional schematics.

user’s keyboard and mouse, which it forwards to whichever
desktop machine is currently active, namely the one whose
application the user is currently interacting with. We refer
to each of the desktop machines as a separate domain, and
sometimes call the active domain the current domain.

When the user clicks a different part of the display with
her mouse pointer, the CDDC determines which domain has
the topmost content on screen at that location. That domain
then becomes the new active domain, causing keyboard
and mouse input to be directed to it. In this way, domain
switching is facilitated via ordinary mouse gestures enhancing
the quality of the user experience.

The CDDC’s security naturally rests on the user re-
maining at all times aware of which domain is currently
active, and to which domain each of the on-screen elements
belongs. Therefore, the CDDC decorates each of the com-
posited display elements with a separate coloured border to
unambiguously identify which domain it belongs to. The
CDDC additionally indicates at all times which is the active
domain by rendering a permanent and prominent UI element,
called the overlay, at the top of the screen. The overlay is
a large, vividly coloured banner that names the currently
active domain and is coloured according to a unique colour
assigned to that domain (also used to decorate the borders
of all of the domain’s other on-screen content).

The CDDC was originally prototyped using just an
FPGA [6], but has since been re-implemented using a FPGA-
software combination, in which keyboard and mouse input
processing is implemented in software on top of seL4 running
on an ARM Cortex A9 processor (see Figure 4b). The
software implementation provides greater flexibility with
regard to runtime configuration and user preferences.

In the FPGA-software implementation, the FPGA remains
responsible for rendering the composited display, including
the overlay indicating the active domain and the decorations
on each of the display elements. Thus the FPGA holds
the authoritative information about which domain occupies
each region of the composited display, and which domain
is currently active. However, the software is responsible for
directing keyboard and mouse input at all times to the active
domain. When a mouse click is received, the software queries
the FPGA to find out which domain was clicked on, but then
it is the software that is responsible for directing the FPGA

that a domain switch has taken place, and which domain was
switched to (allowing for future customisation of domain-
switching gestures). Therefore the software maintains its
own internal state about which domain is currently active.
A critical security invariant, then, is that the software’s idea
of which is the active domain agrees with the FPGA’s.

Indeed, a basic assumption is that at all times, the user
inputs data whose sensitivity agrees with the active domain,
as rendered on the on-screen overlay. If the software’s idea
of which domain is currently active disagrees, the input may
go to the wrong domain: a clear security violation.

5.1. Verified seL4-Based Software Architecture

The user input handling software of the CDDC is
implemented as a concurrent program consisting of multiple
application components running on top of the verified seL4
microkernel [19]. The software component architecture we
verified is depicted in Figure 4c.

In the remainder of this section we discuss how we
applied COVERN to model and verify the behaviour of this
concurrent software system for input handling.

The software comprises three components, which we
abbreviate SWITCH, INPUT, and OVERLAY (see Figure 4c).

INPUT is a driver component that sits in an infinite loop
querying the mouse and keyboard hardware interfaces for
input, and forwarding it to SWITCH via a shared-memory
buffer. In COVERN, for simplicity we model the shared buffer
as a single-place buffer; doing so does not affect the essence
of the security argument, as we explain later.

Importantly, to verify this concurrent software, we have
to capture the assumption that the user always provides
input that agrees with the current domain indicated on the
on-screen overlay. Therefore INPUT includes a model of
the decision of a trusted user who faithfully chooses (via a
single if-statement) whether to provide High or Low input,
making this choice in accordance with the value of a single
shared variable, indicated domain, which in our model
represents the state of the on-screen overlay (i.e. represents
the FPGA’s idea of the currently active domain).

OVERLAY is a driver component for interacting with
the FPGA that sits in an infinite loop and provides an RPC
interface so that SWITCH can query the FPGA about which

domain occupies a particular location on-screen (e.g. when
a mouse click is received, as described above). We model
this RPC interface in COVERN using shared variables and
locks, whose details are relatively straightforward and are
omitted here for brevity.

SWITCH sits in an infinite loop that on each iteration reads
an input event from the buffer that it shares with INPUT, and
then directs that input to whichever domain SWITCH believes
is currently active. Mouse clicks are handled by SWITCH by
first querying the OVERLAY to find out which domain was
clicked on, and then updating the FPGA state if SWITCH
determines that the user has performed a domain-switch.
We discuss below our decisions regarding value-dependent
classification of the different input event types, in light of
which input events are allowed to cause a domain switch.

To implement these concerns, each iteration of SWITCH’s
server loop polls the shared buffer to take a local copy of
the current input event, and then branches on whether the
input event is a mouse event or a keyboard event. Keyboard
input events cannot change which is the active domain, and
so are handled relatively simply: SWITCH merely sends the
keyboard event to the currently active domain according to
the software’s idea of which domain is active, which is stored
in a variable active domain. On the other hand, mouse
inputs can change which is the active domain, hence this
case is more complicated, and includes not only querying
OVERLAY as mentioned above, but also discerning whether
a mouse click has occurred by comparing the current mouse
event against past ones, which SWITCH tracks in a variable
named switch state mouse down.

If the current mouse event is deemed to cause a do-
main switch (because it clicks on a domain other than
active domain), SWITCH will then update both the soft-
ware’s active domain variable alongside issuing a com-
mand to the compositor hardware to update its idea of
which is the active domain. In our model we capture this
final update with a write to the shared indicated domain
variable. Finally, SWITCH sends the mouse event itself
to whichever domain it is currently hovering over, and
updates the aforementioned switch state mouse down
variable.

5.2. Value-Dependent Classification of Input

Recall that a domain switch may occur only via mouse
clicks. Mouse input must therefore be classified Low, for
otherwise the user’s decisions about when to switch domains
would itself constitute a covert channel.

Keyboard input on the other hand is drawn from two
different sources, one for High input, which is classified High,
and the other for Low input, naturally classified Low. Once
it enters the SWITCH component, however, its classification
is value-dependent. Since SWITCH chooses the input source
based on the FPGA’s indicated domain, the variables
that hold keyboard input received by SWITCH are classified
according to the current value of indicated domain.

Thus, the classification of any input event stored in
the single shared buffer between INPUT and SWITCH is

dependent on two control variables: the field of the input
event indicating whether it is a keyboard or a mouse event,
which we model with a variable input event type, and
the current indicated domain. As required by COVERN,
control variables must be statically classified Low. We thus
split off the data field of the input event into its own variable
input event data. Now it can be dynamically classified
High or Low without affecting the classification of its
associated control variable. Its value-dependent classification
is as follows:
if input event type = KEYBOARD ∧
indicated domain = DOM HIGH then High else Low

Observe that even in the relatively simple language of
COVERN, this model makes good use of fine-grained value-
dependent classifications for specifying security contracts,
in this case for the interface between INPUT and SWITCH.

5.3. Critical Sections and Data Invariants

COVERN’s support for data invariants is vital for en-
coding the contract that the FPGA’s idea of which domain
is currently active (indicated domain), agrees with the
software’s (active domain). Therefore, we associate these
variables with a common lock used to protect access to them,
and associate with this lock the data invariant that

indicated domain = active domain.

This invariant must be encoded as one attached to a lock in
this way because e.g. indicated domain is accessed by
both INPUT (to choose the appropriate input source, to model
a trustworthy user), and SWITCH (which updates it when it
determines that a domain switch has occurred). Therefore
each of these components must rely on the other to preserve
the data invariant while that component is accessing the
shared variables. Specifying it as a data invariant captures
this requirement precisely. Naturally COVERN then obliges us
to prove that each of these components does indeed maintain
the invariant, as required for security.

Since this lock protects a control variable for
input event data, it must naturally protect that variable
as well, along with its other control variables.

Thus INPUT acquires this lock while it consumes the
user’s input from whichever input source is indicated
by indicated domain. Doing so naturally captures the
requirement that the indicated domain cannot change
while the user is inputting data (but only between each
inputted value, ensuring our model of the trustworthy user
is not subject to Time-Of-Check-Time-Of-Use (TOCTOU)
vulnerabilities.)

The SWITCH must also acquire this lock when reading the
input from the shared buffer. Since the input is spread across
multiple variables (as it is in the real implementation), it
cannot be read atomically without this lock. Besides ensuring
atomic access to the compound input data, this lock also
prevents INPUT trying to place new input in the buffer while
a domain switch might be occurring.

COVERN naturally allows SWITCH to assume the data
invariant active domain = indicated domain when it

acquires the lock, and obliges it to show that the invariant
is maintained when the lock is released.

Thus updates to these variables must be performed while
holding the lock, and the data invariant prevents SWITCH
from releasing the lock having updated e.g. its own internal
idea of which domain is active without also having updated
the FPGA state. Changing indicated domain (the FPGA
state) alters the classification of the input buffer, which
depends on indicated domain as described above. Thus
when changing the active domain, SWITCH is required to
flush the shared buffer. Doing so prevents vulnerabilities in
which stale input data, input by the user while a previous
domain was still active (when SWITCH hadn’t yet processed
a pending domain switch gesture), is subsequently sent to
the new active domain.

5.4. Discussion

The CDDC model comprises about 200 lines of “code”
in COVERN’s language. While we have described only a part
of it, we see that both data invariants and value-dependent
classifications were critical to specify and verify the dynamic
security requirements of this concurrent program. The entire
model and its proofs are just over 1,000 lines of Isabelle.

As mentioned above, we model here only a single-
place shared buffer for input events between INPUT and
SWITCH. In the implementation, this buffer is a shared-
memory array with head and tail indices that implement
a producer-consumer ring buffer. While these details do
not change the essence of the security argument, proving
the ring buffer implementation secure would benefit from
augmenting COVERN with support for arrays. We leave doing
so for future work.

We note that our model captures an early prototype
of the CDDC software, which has since been extended to
support features like initiating domain switches via keyboard
hotkey sequences and via hardware buttons on the front
of the device. Modelling the latter functionality would be
relatively straightforward (as such inputs would be classified
as statically Low); however COVERN is not equipped to
model the former (in which the classification of a keystroke
might depend on the ones that follow it).

We also note that our model applies to an instance of
the CDDC connected to just two networks of High and
Low relative classifications. Extending COVERN to arbitrary
lattices of classifications should be relatively straightforward.

6. Related Work

COVERN and its underlying general rely guarantee theory
is heavily inspired by previous work on rely guarantee
reasoning for noninterference [23], [27]. It can be seen as
extending such prior work by adding support for general rely
guarantee relations R and G. Prior frameworks supported only
coarse grained assumptions on individual shared variables,
such as “no write” or “no read-write”. Such assumptions
are insufficient to justify the reasoning necessary to preserve
data invariants in between when a component releases a

lock ` and later re-acquires it. Thus COVERN couldn’t exist
without the general rely guarantee framework of Section 3.

COVERN also borrows from concurrent separation
logic [10], [30]. In particular, by associating data invariants
and assumptions and guarantees on locks, it automatically en-
forces rely-guarantee compatibility. No prior rely-guarantee-
based noninterference reasoning system achieved this feat.

COVERN implicitly requires all locks to be classified
as Low, preventing locks from being acquired when the
program’s execution timing is affected by High data (e.g.
within a High loop or a High conditional). This kind of
restriction is natural in the context of timing sensitive
noninterference to prevent timing leaks between threads [33].

One might reasonably argue that source level reasoning
about timing sensitive security is necessarily fraught, since
timing variations due to cache interference will cause far
more serious deviations in execution time than e.g. differing
numbers of execution steps in a High conditional. We agree
and note that these issues do not arise in the context of code
that doesn’t branch on secrets or perform secret dependent
memory look-ups, a category that we mentioned already is
becoming ever larger, and to which COVERN is currently
geared. On the other hand, [12] recently present a type
system for verifying (non-value-dependent) timing-sensitive
noninterference for a micro-architecture in which caches are
absent, namely AVR. We note that transferring COVERN’s
reasoning down to assembly code, where reasoning about
timing becomes more precise, can be achieved by crafting
special purpose refinement theories, even in the presence
of concurrency [27]. Finally, the assumption of execution
steps taking constant time can also be approximated, at
least internally between components, by adopting instruction
based scheduling [35] (IBS).

Beaumont et al. [6] present a formal IFC proof for an
initial prototype hardware design of the CDDC. Unlike ours
presented here in Section 5, theirs deals with a far simpler
logical model of the hardware’s functionality, whereas ours
deals in its more recent seL4-based concurrent software
implementation. Their proof is not compositional, resting on
the manual definition and proofs of maintenance of a single
relational invariant across all of the state in the model. Ours
exploits COVERN’s natural support for modular reasoning.

7. Conclusion

We presented COVERN, the first general logic for compo-
sitional reasoning about IFC for concurrent shared memory
programs, underpinned by a general framework for rely
guarantee reasoning for IFC, demonstrating its utility by
describing its successful application to verifying the software
design of the Cross Domain Desktop Compositor.

Acknowledgements

We thank the anonymous reviewers for their valuable
feedback and for convincing us not to name the logic COV-
FEFE. This research was supported by the Commonwealth

of Australia Defence Science and Technology Group and
the Defence Science Institute, an initiative of the State
Government of Victoria.

References

[1] T. Amtoft, S. Bandhakavi, and A. Banerjee, “A logic for information
flow in object-oriented programs,” in POPL, 2006, pp. 91–102.

[2] A. W. Appel, R. Dockins, A. Hobor, L. Beringer, J. Dodds, G. Stewart,
S. Blazy, and X. Leroy, Program Logics for Certified Compilers, New
York, NY, USA, 2014.

[3] A. W. Appel and others, “The Verified Software Toolchain,” https:
//github.com/PrincetonUniversity/VST, 2017.

[4] T. Bauereiß, A. P. Gritti, A. Popescu, and F. Raimondi, “CoSMed:
A confidentiality-verified social media platform,” in ITP, 2016, pp.
87–106.

[5] ——, “CoSMeDis: a distributed social media platform with formally
verified confidentiality guarantees,” in S&P. IEEE, 2017, pp. 729–748.

[6] M. Beaumont, J. McCarthy, and T. Murray, “The cross domain desktop
compositor: Using hardware-based video compositing for a multi-level
secure user interface,” in ACSAC, 2016, pp. 533–545.

[7] D. J. Bernstein, T. Lange, and P. Schwabe, “Nacl: Networking and
cryptography library,” Available at: http://nacl.cr.yp.to/.

[8] ——, “The security impact of a new cryptographic library,” in 2nd
LATINCRYPT, Santiago, CL, Oct 2012, pp. 159–176.

[9] G. Boudol and I. Castellani, “Noninterference for concurrent programs
and thread systems,” Theoretical Computer Science, vol. 281, no. 1-2,
pp. 109–130, 2002.

[10] S. Brookes, “A semantics for concurrent separation logic,” Theoretical
Computer Science, vol. 375, pp. 227–270, 2007.

[11] D. Costanzo, Z. Shao, and R. Gu, “End-to-end verification of
information-flow security for C and assembly programs,” in PLDI,
2016, pp. 648–664.

[12] F. Dewald, H. Mantel, and A. Weber, “AVR processors as a platform
for language-based security,” in ESORICS, ser. LNCS, vol. 10492,
2017, pp. 427–445.

[13] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, and H. Yang,
“Views: compositional reasoning for concurrent programs,” SIGPLAN
Notices, vol. 48, no. 1, pp. 287–300, 2013.

[14] X. Feng, R. Ferreira, and Z. Shao, “On the relationship between
concurrent separation logic and assume-guarantee reasoning,” in ESOP,
ser. LNCS, vol. 4421, 2007, pp. 173–188.

[15] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
Journal of Cryptographic Engineering, 2018, (to appear).

[16] J. Goguen and J. Meseguer, “Security policies and security models,”
in S&P, Oakland, California, USA, Apr 1982, pp. 11–20.

[17] C. B. Jones, “Development methods for computer programs including
a notion of interference,” D.Phil. thesis, University of Oxford, Jun
1981.

[18] S. Kanav, P. Lammich, and A. Popescu, “A conference management
system with verified document confidentiality,” in CAV, ser. LNCS,
vol. 8559, 2014, pp. 167–183.

[19] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolan-
ski, and G. Heiser, “Comprehensive formal verification of an OS
microkernel,” ACM Transactions on Computer Systems, vol. 32, no. 1,
pp. 2:1–2:70, Feb 2014.

[20] R. Krebbers, A. B. Ralf Jung, J.-H. Jourdan, D. Dreyer, and L. Birkedal,
“The essence of higher-order concurrent separation logic (“Iris 3.0”),”
in ESOP, ser. LNCS, vol. 10201, 2017, pp. 696–723.

[21] P. Li and S. Zdancewic, “Arrows for secure information flow,”
Theoretical Computer Science, vol. 411, no. 19, pp. 1974–1994, 2010.

[22] L. Lourenço and L. Caires, “Dependent information flow types,” in
POPL, Mumbai, India, Jan 2015, pp. 317–328.

[23] H. Mantel, D. Sands, and H. Sudbrock, “Assumptions and guarantees
for compositional noninterference,” in CSF, Cernay-la-Ville, France,
Jun 2011, pp. 218–232.

[24] T. Murray, “On high-assurance information-flow-secure programming
languages,” in PLAS, Prague, Czech Republic, Jul 2015, pp. 43–48.

[25] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein, “seL4: from general purpose to a
proof of information flow enforcement,” in S&P, San Francisco, CA,
May 2013, pp. 415–429.

[26] T. Murray, D. Matichuk, M. Brassil, P. Gammie, and G. Klein,
“Noninterference for operating system kernels,” in CPP, Kyoto, Japan,
Dec 2012, pp. 126–142.

[27] T. Murray, R. Sison, E. Pierzchalski, and C. Rizkallah, “Compo-
sitional verification and refinement of concurrent value-dependent
noninterference,” in CSF, Lisbon, Portugal, Jun 2016, pp. 417–431.

[28] A. Nanevski, A. Banerjee, and D. Garg, “Verification of information
flow and access control policies with dependent types,” in S&P, May
2011, pp. 165–179.

[29] T. Nipkow, L. Paulson, and M. Wenzel, Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, ser. LNCS, 2002, vol. 2283.

[30] P. W. O’Hearn, “Concurrency, and local reasoning,” ser. LNCS, vol.
3170, 2004.

[31] S. Owicki and D. Gries, “An axiomatic proof technique for parallel
programs,” Acta Informatica, vol. 6, pp. 319–340, 1976.

[32] A. Russo, K. Claessen, and J. Hughes, “A library for light-weight
information-flow security in Haskell,” in 1st ACM SIGPLAN Haskell
Symposium, 2008, pp. 13–24.

[33] A. Sabelfeld, “The impact of synchronisation on secure information
flow in concurrent programs,” in Ershov Memorial Conference 2001,
2001, pp. 225–239.

[34] A. Sabelfeld and D. Sands, “Probabilistic noninterference for multi-
threaded programs,” in IEEE Computer Security Foundations Workshop
(CSFW), 2000, pp. 200–215.

[35] D. Stefan, P. Buiras, E. Z. Yang, A. Levy, D. Terei, A. Russo, and
D. Mazières, “Eliminating cache-based timing attacks with instruction-
based scheduling,” in ESORICS, Egham, UK, Sep 2013, pp. 718–735.

[36] N. Swamy, J. Chen, and R. Chugh, “Enforcing stateful authorization
and information flow policies in Fine,” in ESOP, March 2010.

[37] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang,
“Secure distributed programming with value-dependent types,” in ICFP,
2011, pp. 266–278.

[38] D. Volpano and G. Smith, “Probabilistic noninterference in a con-
current language,” Journal of Computer Security, vol. 7, no. 2,3, pp.
231–253, 1999.

[39] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” in ASPLOS,
2015.

[40] L. Zheng and A. C. Myers, “Dynamic security labels and static infor-
mation flow control,” International Journal of Information Security,
vol. 6, no. 2–3, Mar 2007.

https://github.com/PrincetonUniversity/VST
https://github.com/PrincetonUniversity/VST
http://nacl.cr.yp.to/

