
Assume but Verify: Deductive Verification of Leaked Information
in Concurrent Applications (Extended Version)

Toby Murray
toby.murray@unimelb.edu.au

University of Melbourne
Australia

Mukesh Tiwari∗
mt883@cam.ac.uk

University of Cambridge
United Kingdom

Gidon Ernst
gidon.ernst@lmu.de

LMU Munich
Germany

David A. Naumann
naumann@cs.stevens.edu

Stevens Institute of Technology
USA

ABSTRACT

We consider the problem of specifying and proving the security
of non-trivial, concurrent programs that intentionally leak infor-
mation. We present a method that decomposes the problem into
(a) proving that the program only leaks information it has declas-
sified via assume annotations already widely used in deductive
program verification; and (b) auditing the declassifications against
a declarative security policy. We show how condition (a) can be
enforced by an extension of the existing program logic SecCSL, and
how (b) can be checked by proving a set of simple entailments. Part
of the challenge is to define respective semantic soundness criteria
and to formally connect these to the logic rules and policy audit.
We support our methodology in an auto-active program verifier,
which we apply to verify the implementations of various case study
programs against a range of declassification policies.

1 INTRODUCTION

Methods for proving that programs are not just functionally correct,
but also maintain confidential information securely, have been ap-
plied to realistic software like operating system kernels [29, 59], en-
compassing features like concurrency [46, 60] and pointers [28, 39].
These methods have also been embodied in auto-active program
verification tools like SecC [37] and a variant of Viper [35, 58].
In the auto-active verification paradigm, popularized by tools like
Dafny [50, 51], VeriFast [44], and Why3 [38], programs are verified
semi-automatically via annotations added to their source code, sup-
porting a high degree practical usability (made possible by advances
in automated backend provers like SMT solvers).

The standard criterion for security is noninterference [40] which
guarantees absence of information leaks. However, as has been
noted repeatedly [5, 17, 18, 34, 71, 72, 77, 81], practical programs
that handle sensitive information almost always intentionally re-
veal some part of that information. Such an act of declassification
is deemed secure if it adheres to a given high-level policy. As an
example (Section 2), we may release statistics like the average of
numbers in a data set if this set is sufficiently large and/or homoge-
neous enough such that the leaked information about the individual
data points is acceptably low. One approach to reasoning about
declassification relies on relational assume statements [9, 25], and

∗This work was carried out while the author was at the University of Melbourne.

this is used in tools like SecC [37] and a variant of Viper [58] —but
these tools make no formal connection with high level policy.

A high level policy designates security levels for input and out-
put channels, with a basic interpretation that observations at a
given level should reveal no information about inputs except those
at or below the given level – and except for designated intentional
releases. Such a declarative policy designates what information
may be released to observers at lower level, and when, i.e., under
what conditions. The conditions refer to observable data values
and events, like the size of the data set in our example. The pre-
cise meaning of a declarative policy can be formalized in terms of
observer knowledge [5, 7–9, 18].

In a nutshell, this paper contributes an auto-active verification
tool that provably enforces declarative high level policies for con-
current C code, and its evaluation through challenging case studies.
Security is defined in terms of knowledge and proved using a rela-
tional logic. Previously, this approach has only been sketched [26,
Section VII, B] for a much simpler program semantics and with no
implemented tool.

The first contribution of this paper is to formalize the security
property given by a high level policy, for a programming model
with concurrent threads and dynamically allocated mutable objects,
with respect to a standard threat model. That is, the property makes
the strong guarantee of constant-time security [2], which precludes
secret-dependent branching and loads/stores for memory addresses
that are secret-dependent. Thus, even in the presence of variable la-
tency induced by instruction- and data-caches, a program’s running
time is independent of secrets. This is more restrictive than some
security conditions in the literature, as discussed in Section 8, but
the threat model is well suited to many context where C programs
are used.

Our formalization disentangles a policy-agnostic [80] security
property from the policy-specific property associated with a high-
level declarative policy. This supports an important methodological
point. In a well designed program, declassifications occur only
at particular places in the code. To verify a program, we desig-
nate these places by assume statements. The policy-agnostic prop-
erty says that no releases occur —i.e., the observer never learns
anything— except at execution steps with assume statements. The
policy-specific property says that those steps only release what is al-
lowed by the policy, and only when the associated release condition
holds.

https://orcid.org/0000-0002-8271-0289
https://orcid.org/0000-0001-5373-9659
https://orcid.org/0000-0002-3289-5764
https://orcid.org/0000-0002-7634-6150

, , Murray et al.

Our second contribution is a deductive proof system which
supports reasoning about assume and assert statements. A high
level policy specifies conditions under which particular values may
be released. Because the policy is program-independent, it expresses
release conditions as predicates on the program’s I/O history (in-
spired by [9, 72]). To verify a program with respect to a high level
policy, each assumption should be justified by an assertion of a
condition in the high level policy that licenses the release —we call
this policy audit. The assertion makes use of a ghost variable that
records the history. We prove that (a) the proof system is sound
wrt. the policy-agnostic property, and (b) if the program passes the
policy audit then it satisfies the policy-specific security property.
The proofs are mechanized in Isabelle/HOL.

We choose to base the second contribution on the existing logic
SecCSL [37], as it comes not only with a tool implementation but
also amechanized soundness proof that SecCSL satisfies strong non-
interference (absent assume statements). We extend this framework
by uniformly capturing security-relevant semantic actions of the
program (assumptions, actions/outputs, memory access) as the basis
of the policy-agnostic security guarantee. In doing so, we inherit
from SecCSL its capabilities for proving security of concurrent
programs with lock-based synchronization.

The third contribution of this work is a practical demonstra-
tion of the approach. We have implemented the approach in the
auto-active verifier Verdeca, including support for declassification
and policy audit. Verdeca treats a subset of C, and is targeted
at verifying concurrent shared-memory programs that use lock-
based synchronization. We leave verification of lock-free programs,
exposed to weak-memory effects [79], to future work.

We carry out several challenging case studies: The first, a location
service for mobility traces [21] leverages domain knowledge about
privacy budgets wrt. adding planar laplacian noise [4] to achieve
differential privacy [33] via a suitable policy; verifying that this
budget is never exceeded. The second case study, a sealed-bid auc-
tion server ensures that no client learns anything about the current
maximum bid until the auction closes. Each client’s TCP connection
is serviced by a separate thread to ensure that no client can block
the server’s progress and thereby game the auction. With a variant
of this example we demonstrate furthermore policy composition.
The third case study is a verified constant-time implementation of
the popular game Wordle, where rules of the game induce an in-
teresting value-dependent, multi-level declassification policy with
each move of the player, i.e., revealing information about the char-
acters and positions guessed correctly to that player, but not to
other concurrent players nor to the general public. The final case
study considers secure, constant-time, private learning, specifically
differentially private gradient descent to infer a simple linear model,
designed for deployment in a federated learning scenario [78].

Section 2 gives a high-level overview of the ideas. The threat
model is made explicit in Section 3. The semantic and logical foun-
dations are presented in Section 4. The policy-agnostic and policy-
specific guarantees are formalized in Section 5 and Section 6, re-
spectively. Case-studies are presented in Section 7, and Section 8
compares to related work and concludes. Appendix B sketches
proofs for our main results, which are mechanised in Isabelle/HOL.

struct avg_state { int count; int sum; };

struct avg_state * avg_lock();

void avg_unlock(struct avg_state *st);

int avg_get_input();
_(ensures result :: high)
_(requires H(𝑡𝑟))
_(ensures H(𝑡𝑟 · result))

void print_average(int value);
_(requires value :: low)

void avg_sum_thread() {

while(true) {

struct avg_state * st = avg_lock();

int i = avg_get_input();

st->count += 1;

st->sum += i;

avg_unlock(st);

}

}

void avg_declass_thread() {

struct avg_state * st = avg_lock();

if (st->count >= 6) {

int avg = st->sum / st->count;
_(assume avg :: low) (†)
print_average(avg);

}

avg_unlock(st);

}

Figure 1: Declassifying the average of at least 6 inputs.

2 MOTIVATION AND OVERVIEW

Consider the program in Fig. 1, inspired by the running average
example from Schoepe et al. [72]. It represents the state-of-the-art
in terms of the size of concurrent programs that have been verified
for secure declassification prior to Verdeca; our case studies in
Section 7 are an order of magnitude larger.

Here, two threads cooperate to compute and declassify an ag-
gregate statistic (in this case a simple average) calculated over
purportedly sensitive inputs. This program’s declarative security
policy allows the average of the inputs received to be declassified
so long as that average has been calculated over at least 6 inputs.

One thread repeatedly waits for new inputs to arrive and com-
putes a running sum as well as the count of the inputs received
so far; the second thread reads these values from the shared state,
and prints out the average but only if at least 6 inputs have been
counted in the shared state, to honor the security policy.

This program makes use of four external library functions (those
in Fig. 1 without an implementation). Such functions are part of
the application’s trusted computing base (TCB) and are trusted
to be correct and secure. The external functions avg_lock() and

Assume but Verify: Deductive Verification of Leaked Information in Concurrent Applications (Extended Version) , ,

avg_unlock() implement a mutex that is used to coordinate access
to the shared state (running input count and sum) between the two
threads. Function avg_get_input() gets the next input of high
sensitivity, i.e., it returns a secret value. This is specified in terms
of its postcondition inside the annotation _(ensures result::
high), where 𝑒 :: ℓ denotes that the expression 𝑒 holds a value
that conforms to classification by security label ℓ . The other two
annotations mentioning H track the input/output history of the
program as a trace tr of events that are relevant to the declas-
sification policy, here the trace is extended by the result of the
function. Function print_average() prints out its argument to a
public channel, its contract similarly mentions a classification, this
time, the precondition inside _(requires value :: low) spec-
ifies that any argument passed to this function should be of low
sensitivity, i.e., public.

What does it mean for this program to be secure? Clearly, the pro-
gram does not satisfy noninterference [40], which requires that the
attacker never learns secret values: since the values stored in count
and sum have been computed from the secret inputs and the attacker
will in general learn something from the call to print_average().
Indeed, proving the program secure with vanilla SecCSL [37] will
not be possible, therefore we add assume statements in Section 4.2,
which make explicit the decision that the value of avg can now be
considered to be public right before the call to print_average().
Fig. 1 shows use of an assume statement to make explicit the de-
classification (†).

From the point of a verification engineer, assume statements
express that from this point onwards in the program’s execution,
the attacker is assumed to know the declassified value [26], as with
avg in the example above. And indeed, merely adding assume state-
ments to the logic is easy, and this is how they have been used in
other approaches [35]. But what justifies such an assumption? Just
as with assuming the absence of hash collisions in cryptographic
applications [32], the act of declassification should be justified with
respect to high level policy. The practical challenges in verifying the
program are fundamentally on a different level of abstraction than
the concerns related to formulating and validating declassification
policies. Therefore, we argue, security in the presence of declas-
sification policies intrinsically suggests separating two concerns:
(a) the code leaks no information except as made explicit in assump-
tions, and (b) all assumptions are justified by the high level policy.
For both concerns individually we provide a security property and
a sound verification method.

Goal: policy-agnostic security guarantee. Infor-
mation leaks in a verified program can always be
traced back to a prior failed assumption.

To make this intuition precise we consider the attacker’s knowledge
at a given point in an execution (called the “major run” [13]), in
terms of their uncertainty [7, 26, 72] about the initial secrets. The
uncertainty is the set of runs that are consistent with what the
attacker is able to observe about the major run. A given “minor run”
gets removed from the uncertainty at any step of the major run
where the attacker can observe something inconsistent with that
minor run. Our formalization is based on the notion of a schedule,
a generic semantic model that relates such observations to points
in control flow annotated with explicit assumptions about attacker

major run 𝑠1 𝑠𝑖 𝑠𝑖+1 𝑠 𝑗 𝑠 𝑗+1 · · ·
𝜎1 Assm 𝜌 𝜎𝑖+1 Out 𝑣

minor run 𝑠′
𝑗+1 . . .𝑠′1 𝑠′

𝑖
𝑠′
𝑖+1 𝑠′

𝑗

𝜎′1 Assm 𝜌 𝜎′
𝑖+1 Out 𝑣′

¬𝜌 0ℓ≈ℓ ≈ℓ

part of the attacker’s uncertainty

policy D
𝜑D { 𝜌Dtr

policy-specific audit

Figure 2: Visual representation that relates a major run to a

hypothetical minor run, where the mismatch in outputs can

be traced to an earlier failed assumption.

knowledge. In Fig. 2 the attacker is uncertain about the possible
initial state 𝑠′1 because there exists a minor run up to the state 𝑠′

𝑗

whose schedule (primed 𝜎′) is observationally equivalent, written
≈ℓ , to the schedule of the major run (unprimed 𝜎). In the 𝑗-th step,
an information leak occurs when the outputs mismatch 𝑣 ≠ 𝑣 ′. The
policy-agnostic security guarantee ensures that this mismatch can
always be explained by an assumption 𝜌 , occurring at an earlier
𝑖-th step, that is not satisfied at that point (cf. red backwards ar-
row). Dually, the attacker is not allowed to exclude runs from their
uncertainty that have no such assumption violation. We formally
prove this as Theorem 5.6 in Section 5.

Note that formulas 𝜌 like 𝑒 :: ℓ are interpreted relationally over
pairs of states, specifically 𝑒 :: low means that 𝑒 evaluates to
the same value in both. In the example from Fig. 1, therefore, the
assumption 𝜌 =̂ avg :: low (marked by (†)) must have failed
between some prior 𝑠𝑖 and 𝑠′𝑖 , such that the difference between 𝑣

and 𝑣 ′ is caused by the different values of avg.
A declassification policy D(tr) is formulated over a representa-

tion of the execution trace tr , that is collected as auxiliary “ghost”
state in the verification as a syntactic expression of a suitable se-
quence data type. The trace is tracked with an abstract I/O pred-
icateH(tr) that specifies that the trace denoted by expression tr
is the current history of the program at that point and that tr is
well-formed wrt. the application (examples in Section 7).

A policy D(tr) over trace tr takes the form 𝜑D (tr) { 𝜌D (tr).
It consists of a condition 𝜑D on traces which states when a declas-
sification is permitted, and a relational release formula 𝜌D , which
encodes what information is allowed to be released. For the exam-
ple, the policy requires that the trace tr has a length of at least 6; it
then justifies to classify the average over the numbers stored in tr
as low:

D(tr) =̂ length(tr) ≥ 6 { sum(tr)/length(tr) :: low

Here, the critical issue is to enforce whether all assumptionsmade in
the program are covered by the policy, with respect to the symbolic
path constraints at that point, which we call an audit (exemplified
below).

, , Murray et al.

Goal: certified adherence to policy. In a program
that has been correctly audited with respect to a de-
classification policy, the information leak associated
with each assumption is bounded by the policy.

In Fig. 2 this is depicted at the top (green): each possibly failing
assumption has to be justified from the policyD with respect to the
trace prefix tr at that point. Together with the policy-agnostic guar-
antee, this implies that from the execution of a verified and audited
program an attacker can only gain knowledge that is allowed by the
policy. We formalize this as Theorem 6.5 in Section 6 by integrating
a declarative semantics of policies over traces with the program’s
schedules, i.e., with the ground-truth about the execution.

To prove the audit (i.e. that each assumption that introduces a
leak is justified by the declassification policy D) we make use of
invariants established by the verification that connect the program’s
state to the abstract trace. For the example, this means that the
verification attaches the following resource invariant to the shared
state (acquired when calling avg_lock() and required to be true
when calling avg_unlock()):

inv(tr, st) =̂ H(tr) ∧ st->count = length(tr) (1)
∧ st->sum = sum(tr)

Together with path condition st->count >= 6 from the if test,
the audit formally certifies that right before the assume, the policy
condition 𝜑D (tr) is entailed. Auditing then requires us to prove
that the policy release formula 𝜌D (tr) (what the policy allows to be
declassified) implies the assumption avg ::low (what the program
has actually declassified), which holds under the resource invariant
and thus this example satisfies secure declassification. The full proof
for this example appears in Appendix A.

In summary, successful verification of an annotated program
ensures that every increase in attacker knowledge occurs following
an assumption that allows the new knowledge. Successful pol-
icy audit ensures that for any assumption there is a policy clause
𝜑D (tr) { 𝜌D (tr) such that the path condition 𝑃 at the assump-
tion implies the release condition 𝜑D (tr) which in turn validates
𝜌D (tr), i.e., the released information is allowed by the policy.

3 THREAT MODEL

We assume a program being verified that contains a number of top-
level functions like avg_declass_thread() and avg_sum_thread()
in Fig. 1. These top-level functions are necessarily invoked from
unverified, trusted wrapper code like main() that may invoke
multiple instances of each function and in parallel. Verified ap-
plication functions also make use of external library functions like
print_average() that are not to be verified and must be trusted.

Our approach rests on a number of assumptions, including [61]
adversary expectations—those assumptions that apply to the attacker—
and domain hypotheses—those that apply to the program’s environ-
ment. We also make various meta-assumptions that apply to the
verification approach itself.

Adversary Expectations. We assume a passive attacker with ar-
bitrary security level ℓ who knows the verified program’s source
code and its proof (as expressed in the annotations in the source).
We assume that the attacker can observe all data passed to any
external library function whose precondition requires that data

to be ℓ or below (including low). Similarly, we assume that the
attacker initially knows only those program data that have been
either marked at ℓ or below in the precondition of a top-level ap-
plication function, or in the postcondition of an external library
function. Without loss of generality, we assume that all secrets
are contained somewhere in the initial program state (e.g. via a
standard, deterministic oracle semantics [27, 59] for functions like
avg_get_input(), not elaborated here). Following the constant-
time security threat model [2], we assume the attacker can observe
not only the program’s execution time but also its memory access
pattern and which conditional branches it takes. These latter are
made observable via timing effects induced by microarchitectural
elements like caches. The attacker can also observe the program’s
concurrent schedule [37, 39].

Domain Hypotheses. We assume that the unverified code is cor-
rect and secure: any preconditions of top-level verified application
functions are always satisfied whenever they are invoked by non-
verified code, and all external library functions satisfy their con-
tracts. We assume that the verified program executes faithfully atop
an operating system whose scheduler does not leak sensitive infor-
mation [59] and is insulated from transient execution effects [19].

Meta Assumptions. Verdeca implements the logic presented in
this paper (Section 4 with the extensions from Section 6), not for
the simple command language defined in Section 4 over which our
soundness theorems are proved, but for a substantial fragment of
the C language. We assume that this implementation is faithful
to the theoretical ideas of this paper as well as to the semantics
of the supported part of C (cf. Section 7). A small caveat is that
Verdeca currentlymodels signed integers asmathematical integers,
so we assume that traditional verification methods have also been
applied to ensure absence of overflow, which is an orthogonal
problem to those considered by this work. Since Verdeca relies
on Z3 to discharge verification conditions, we assume that Z3 has
no soundness bugs that affect our proofs. These assumptions are
common to auto-active verifiers. Similarly, for the mechanized
proofs, we rely on the soundness of Isabelle/HOL, which thanks to
its small-kernel architecture is highly trustworthy.

Claim. Thenwe claim that if verified with Verdeca, the program
in question will adhere to its security policy as specified, against
the aforementioned attacker. Specifically this attacker can learn
no information other than what the program declassifies, and all
declassifications are in accordance with the security policy.

4 BACKGROUND: SECCSL

Security Concurrent Separation Logic (SecCSL) is a program logic
proposed in [37] for proving timing-sensitive noninterference of
concurrent programs. It extends Concurrent Separation Logic [62]
by adding new assertions to capture security-related properties
and by adapting the existing proof rules to ensure that these are
maintained soundly. We adapt and extend SecCSL as the foundation
of Verdeca, for its native support for compositional, modular,
implementation-level reasoning.

Judgements in the logic have the form

⊢ℓ {𝑃} 𝑐 {𝑄}

Assume but Verify: Deductive Verification of Leaked Information in Concurrent Applications (Extended Version) , ,

for a command 𝑐 and pre-/postcondition 𝑃 and 𝑄 , where ℓ denotes
the level of the attacker, typically low. It implies semantically that
if the program 𝑐 is executed when precondition 𝑃 holds then, 𝑐’s
execution will be memory-safe and when 𝑐 terminates the postcon-
dition 𝑄 will hold (partial correctness). Moreover, with respect to
the adversary assumptions stated in Section 3, the execution will
not leak information to the ℓ-level attacker. This includes via timing
channels as the proof rules enforce that programs never branch on
secrets nor perform secret-dependent memory accesses.

In this section we present the necessary background on the
assertion language, the proof rules, and the semantic foundations.
We rely on these preliminaries in Section 5 and Section 6, where
we will discuss how the guarantees entailed by ⊢ℓ {𝑃} 𝑐 {𝑄} are
formalized—these guarantees are the key difference between our
work and SecCSL.

The logic is defined for a core programming language with com-
mands 𝑐:

𝑐 ::= 𝑥 := 𝑒 | lock 𝑙 | unlock 𝑙 | 𝑐1; 𝑐2 | 𝑐1 ∥ 𝑐2 |
if 𝜙 then 𝑐1 else 𝑐2 | while 𝜙 do 𝑐 |
assume 𝜌 | output ℓ′ 𝑒𝑣 | 𝑥 := [𝑒𝑝] | [𝑒𝑝] := 𝑒𝑣 | (†)
trace 𝑒 (‡)

The details of most commands present in SecCSL already remain
unchanged: this includes assignments, locking, sequential/parallel
composition, conditionals, and while loops.

Extensions to SecCSL: Outputs, assumptions, and trace 𝑒 are
new wrt. SecCSL. The two commands for memory load and store
are modeled differently here to capture constant-time security. The
commands on the third line (†) are relevant to the program’s policy-
agnostic security guarantee as discussed in Section 5. The com-
mand trace 𝑒 (‡) represents the occurrence of application-specific
events with data 𝑒 , such as calls to avg_get_input() where 𝑒 cap-
tures its return value. These events are not visible to the attacker
but instead give a declarative account of the guarantees entailed by
policy enforcement, as explained in Section 6.
Notation: For a schedule 𝜎 , formalized as a mathematical sequence
of actions (defined later), we write |𝜎 | to denote its the length, 𝜎1 ·𝜎2
denotes concatenation, ⟨𝑎⟩ is the singleton sequence with element 𝑎,
𝜎𝑖 is the 𝑖–th entry if 𝑖 < |𝜎 | and 𝜎 |𝑖 is the prefix of length 𝑖 . Program
states make use of stores 𝑠 , modeled as mathematical maps; we
write 𝑠 (𝑥) for lookup and 𝑠 (𝑥 := 𝑣) for map override. Heaps ℎ in
addition have a domain dom(ℎ), and we write ℎ = [𝑎 ↦→ 𝑣] for
a singleton heap that maps address 𝑎 to value 𝑣 and ℎ1 ⊎ ℎ2 for
the union of two heaps, implying that they need to have disjoint
domains.

4.1 Expressions and Assertions

The typed language of expressions 𝑒 includes boolean formulas𝜙 : Bool
and a designated sort Label for security labels, including at least
the constants low and high and a binary relation ⊑ that satis-
fies the lattice axioms. The assertion language to formulate pre-
/postconditions includes the standard connectives, quantifiers, and
separation logic primitives points-to and separating conjunction:

assertion 𝑃 ::=
𝜙 | 𝑒 :: ℓ′ | emp | 𝑒𝑝 ↦→ 𝑒𝑣 | 𝑃1 ★ 𝑃2 | 𝑃1 =⇒ 𝑃2 | ∃𝑥 . 𝑃 | · · ·

(𝑠, ℎ), (𝑠′, ℎ′) |=ℓ 𝜙 =̂ 𝑠, 𝑠′ |=ℓ 𝜙 ∧ ℎ = ℎ′ = ∅ for 𝜙 pure
where 𝑠, 𝑠′ |=ℓ 𝜙 =̂ J𝜙K𝑠 ∧ J𝜙K𝑠′

𝑠, 𝑠′ |=ℓ 𝑒 :: ℓ′ =̂ Jℓ′K𝑠 ⊑ ℓ ∧ Jℓ′K𝑠′ ⊑ ℓ =⇒ J𝑒K𝑠 = J𝑒K𝑠′

(𝑠, ℎ), (𝑠′, ℎ′) |=ℓ 𝑒𝑝 ↦→ 𝑒𝑣 =̂ ℎ = [J𝑒𝑝K𝑠 ↦→ J𝑒𝑣K𝑠]
and ℎ′ = [J𝑒𝑝K𝑠′ ↦→ J𝑒𝑣K𝑠′]

(𝑠, ℎ), (𝑠′, ℎ′) |=ℓ 𝑃1 ★ 𝑃2 =̂ ℎ = ℎ1 ⊎ ℎ2 and ℎ′ = ℎ′1 ⊎ ℎ′2
and (𝑠, ℎ𝑖), (𝑠′, ℎ′𝑖) |=ℓ 𝑃𝑖 for 𝑖 = 1, 2

(𝑠, ℎ), (𝑠′, ℎ′) |=ℓ 𝑃1 =⇒ 𝑃2 =̂ (𝑠, ℎ), (𝑠′, ℎ′) |=ℓ 𝑃1
implies (𝑠, ℎ), (𝑠′, ℎ′) |=ℓ 𝑃2

(𝑠, ℎ), (𝑠′, ℎ′) |=ℓ ∃𝑥 . 𝑃 =̂ there are 𝑣, 𝑣 ′ with
(𝑠 (𝑥 := 𝑣), ℎ), (𝑠′ (𝑥 := 𝑣 ′), ℎ′) |=ℓ 𝑃

Figure 3: Relational semantics of assertions.

In addition, we have value sensitivity or classification 𝑒 :: ℓ′, which
expresses that the value of 𝑒 is safe to be known for an ℓ′ attacker,
where 𝑒 :: low is the strongest such assertion and 𝑒 :: high is just
true. Expressive power comes from the reflection of the security
lattice into the assertion language, such that labels ℓ are symbolic
expressions, too. For example, 𝑒 :: (𝑑 ? high : low) denotes a
classification of 𝑒 conditional on the current value of 𝑑 , where
(_ ? _ : _) is an if-then-else expression. Spatial assertions include
the empty heap emp, the points-to predicate 𝑒𝑝 ↦→ 𝑒𝑣 , i.e., 𝑒𝑝
points to valid memory containing value 𝑒𝑣 , and the separating
conjunction 𝑃1 ★𝑃2, i.e., assertions 𝑃1 and 𝑃2 hold on disjoint parts
of the heap, respectively, as usual [62, 68].

An assertion is called pure if it does not make reference to the
heap, and it is called relational if it includes a classification. We
denote pure relational formulas by letter 𝜌 in the following.

Semantically, expressions 𝑒 are evaluated over a store 𝑠 , writ-
ten J𝑒K𝑠 in the standard way. Assertions, in contrast, are evaluated
over a pair of states, each consisting of a store 𝑠 and a heap ℎ, with
respect to the attacker level ℓ . We write 𝑠, 𝑠′ |=ℓ 𝜌 when pure asser-
tion 𝜌 holds and (𝑠, ℎ), (𝑠′, ℎ′) |=ℓ 𝑃 that spatial assertion 𝑃 holds,
where intuitively 𝑠 and ℎ are taken from the actual “major” run of
the program that is compared to 𝑠′ and ℎ′ from some hypothetical
“minor” run in Beringer’s terminology [13] (cf. Fig. 1).

The semantics of assertions is shown in Fig. 3. Non-relational
formulas 𝜙 must hold in both states individually. Value sensitivity
𝑒 :: ℓ′ enforces agreement of the values J𝑒K𝑠 and J𝑒K𝑠′ in both states
for an attacker at level ℓ that is at least as high as ℓ′. Note that
this semantics improves on original SecCSL [37] by not requiring
ℓ′ to agree, which is crucial for specifying the Wordle security
policy (Section 7.3). As in SecCSL [37], pure assertions impose an
empty heap. Spatial assertions extend standard Separation Logic
(SL) semantics to pairs of states point-wise.

In contrast to the grammar shown, the original SecCSL supports

in addition memory location sensitivity, written 𝑒𝑝
ℓ ′↦→ 𝑒𝑣 , which

, , Murray et al.

expresses that both memory access via address 𝑒𝑝 is observable
to an ℓ′-attacker as well as the actual value stored therein. How-
ever, this feature comes with some trade-offs, e.g. assertions are
restricted to the positive fragment of SL and logical entailment
becomes somewhat complex. In Section 4.2 below we offer a differ-
ent approach based on the standard points-to assertion that avoids
these limitations.

4.2 Proof Rules

The proof rules of SecCSL to derive judgements ⊢ℓ {𝑃} 𝑐 {𝑄} are
all “matched” (aka “synchronous”) rules, where the control flow of
program 𝑐 is always the same between the major and minor run.
The approach is adequate for timing-sensitive security as discussed
in Section 3 and integrates nicely into existing logics (though it
is not adequate for weaker security properties that allow some
branching on secrets). Appendix A shows the proof sketch built
from these rules for the example from Section 2.

The proof rules of SecCSL work exactly like those of traditional
Concurrent SL [62, 68] except that the rules for if andwhile in Fig. 4
enforce that the respective branch condition 𝜙 is not secret from the
view of the ℓ-attacker. A similar requirement applies to logical case
splits (rule Split): semantically, there are four combinations how 𝜙

could evaluate, of which our assertion language can represent two
(cf. second line in Fig. 3). These side conditions related to security
are highlighted in light gray . Rules for sequential and parallel
composition, acquiring and releasing locks, as well as the frame and
consequence rules are entirely standard, see e.g. [68] (sequential
fragment) and [41, Fig. 2] (concurrency and locks). The locking rules
transfer ownership of a lock invariant denoted inv(𝑙) for lock 𝑙 such
as the one in Eq. (1).

The proof rules for atomic commands except trace 𝑒 are shown
in Fig. 5. Rule Assume just manifests the assumed formula 𝜌 to
the postcondition [26, Sec. VII B]. In comparison to the other three
rules, there is no justification yet why this assumption can bemade—
as described in Section 2, this justification comes from the global
declassification policy instead as formalized in Section 6, where we
will also show the rule for command trace 𝑒 .

The rule for commands output ℓ′ 𝑒𝑣 , which outputs the value 𝑒𝑣
to the attacker who is at security level ℓ′, requires that the ℓ′-level
attacker knows the value 𝑒𝑣 being output and, hence, does not
learn any new information. It also requires that the expression
ℓ′ denoting the level at which 𝑒𝑣 is being output is known to the
ℓ-level attacker since, otherwise, the choice of the level on which
the output is occurring could leak information. In the example from
Section 2, an output command is represented as library function
print_average(), which specifies that its argument must be low.

In accordance with the threat model from Section 3, the rules
for loading and storing via pointer 𝑒𝑝 are similarly guarded to not
leak information via the memory access pattern, by enforcing that
the pointer is not sensitive.

4.3 Program Semantics

We briefly sketch how program execution is modeled by a typical
small-step operational semantics, similarly to Vafeiadis’ formula-
tion [76], as we rely on this and extend it later. A configuration

captures the runtime state of a program:

configuration 𝑘, 𝑘′ ::= (run 𝐿, 𝑐, 𝑠, ℎ) | (stop 𝐿, 𝑠, ℎ) | (abort)

The configuration (run 𝐿, 𝑐, 𝑠, ℎ) represents a running program
whose current state is given by the store 𝑠 and heap ℎ and whose
remaining program to execute is the command 𝑐 ; 𝐿 is the set of locks
not currently acquired. The configurations (stop 𝐿, 𝑠, ℎ) and (abort)
represent respectively the (successfully) terminated program whose
final unacquired locks are 𝐿 and whose final state is the store 𝑠 and
heap ℎ, and aborted programs (e.g. due to a memory violation).
SecCSL associates to each lock a resource invariant, like the one
shown in Eq. (1) in Section 2. We denote by invs(𝐿) the conjunction
of the invariants of locks in the set 𝐿, i.e., shared state that is not
currently accessed in a critical section.

The transition relation 𝑘
𝜎−→ 𝑘′ represents one execution step

from configuration 𝑘 to configuration 𝑘′ producing the schedule 𝜎 .
Schedules 𝜎 record the sequence of actions of the program that are
relevant to capture the observational powers of the attacker under
the threat model of Section 3. We denote by 𝑘 𝜎−→∗ 𝑘′ the reflexive
transitive closure of the transition relation. The action L (respec-
tively R) represents the decision to schedule the left (respectively
right) command in a parallel composition ∥. The action 𝜏 represents
the execution of atomic command like assignments. In the next
sections we will extend this semantic model of actions to capture
the program’s input-/output behavior, those steps that correspond
to assumptions made in the verification, and we will also make
memory access explicit in the schedule.

Our security guarantees will be expressed relative to what an
attacker can observe from the schedules of runs and whether infor-
mation leaks are covered by policies. In Section 5 and Section 6 we
will capture these notions formally. The complete set of semantic
rules is in Appendix C, Fig. 10. In the next section we present those
that are relevant to the our extensions of SecCSL.

While the noninterference guarantee of SecCSL [37, Theorem 2]
focuses on comparing heap locations, we point out that ⊢ℓ {𝑃} 𝑐 {𝑄}
implies that for a given major execution (run 𝐿, 𝑐, 𝑠, ℎ) 𝜎−→∗ 𝑘 of
program 𝑐 ending in some final/intermediate configuration 𝑘 , any
minor run (run 𝐿, 𝑐, 𝑠′, ℎ) 𝜎 ′

−→∗ 𝑘′ of the same length, as encoded
by |𝜎 | = |𝜎′ |, will satisfy that the attacker learns nothing from the
schedule, which we relax to equivalence of observations below,
written 𝜎 ≈ℓ 𝜎

′, after introducing additional types of actions into
the schedule. Moreover, the matched rules enforce semantically
that 𝑘 and 𝑘′ are either both final or both running configurations
with the same program.

5 POLICY-AGNOSTIC GUARANTEE

In this section, we discuss the policy-agnostic part of our contri-
bution. It is based on the notion of semantic actions, which give
rise to schedules that are much more informative than those of
vanilla SecCSL, which in turn allows us to reason about attacker
knowledge gained from observing an execution of a program that
exhibits such schedules (Definitions 5.1 and 5.3).

The grammar of actions is as follows

action 𝑎 ::= 𝜏 |L |R |Out ℓ 𝑣 |Assm 𝑠 𝜌 |Load 𝑝 | Store 𝑝 |Trace 𝑒

Assume but Verify: Deductive Verification of Leaked Information in Concurrent Applications (Extended Version) , ,

⊢ℓ {𝑃 (𝑒)} 𝑥 := 𝑒 {𝑃 (𝑥)} ⊢ℓ {𝑃} lock 𝑙 {𝑃 ★ inv(𝑙)} ⊢ℓ {𝑃 ★ inv(𝑙)} unlock 𝑙 {𝑃}
⊢ℓ {𝑃1} 𝑐1 {𝑃2} ⊢ℓ {𝑃1} 𝑐2 {𝑃2}

⊢ℓ {𝑃1} 𝑐1; 𝑐2 {𝑃2}

⊢ℓ {𝑃1} 𝑐1 {𝑄1} ⊢ℓ {𝑃1} 𝑐2 {𝑄2} fv(𝑐𝑖) ∩mod(𝑐 𝑗) = ∅
⊢ℓ {𝑃1 ★ 𝑃2} 𝑐1 ∥ 𝑐2 {𝑄1 ★𝑄2}

𝑃 =⇒ 𝜙 :: ℓ ⊢ℓ {𝑃 ★𝜙} 𝑐1 {𝑄} ⊢ℓ {𝑃 ★¬𝜙} 𝑐2 {𝑄}

⊢ℓ {𝑃} if 𝜙 then 𝑐1 else 𝑐2 {𝑄}

𝑃 =⇒ 𝜙 :: ℓ ⊢ℓ {𝑃 ★𝜙} 𝑐 {𝑃}

⊢ℓ {𝑃} while 𝜙 do 𝑐 {𝑃 ★¬𝜙}

𝑃 =⇒ 𝜙 :: ℓ ⊢ℓ {𝑃 ★𝜙} 𝑐 {𝑄} ⊢ℓ {𝑃 ★¬𝜙} 𝑐 {𝑄}

⊢ℓ {𝑃} 𝑐 {𝑄}
Split

Figure 4: Some rules of SecCSL, where fv(𝑒) denotes free variables of 𝑒. Highlighted side-conditions represent security checks.

⊢ℓ {emp} assume 𝜌 {𝜌}
Assume

⊢ℓ { 𝑒𝑣 :: ℓ′ ★ ℓ′ :: ℓ } output ℓ′ 𝑒𝑣 {emp}
Output

𝑥 ∉ fv({𝑒, 𝑒𝑝 })
⊢ℓ {𝑒𝑝 ↦→ 𝑒 ★ 𝑒𝑝 :: ℓ } 𝑥 := [𝑒𝑝] {𝑥 = 𝑒 ★ 𝑒𝑝 ↦→ 𝑒}

Load

⊢ℓ {𝑒𝑝 ↦→ 𝑒 ★ 𝑒𝑝 :: ℓ } [𝑒𝑝] := 𝑒𝑣 {𝑒𝑝 ↦→ 𝑒𝑣}
Store

Figure 5: Proof rules for commands that produce security-

relevant actions; security checks are highlighted . Discus-

sion of command trace 𝑒 is deferred to Section 6.

where internal action 𝜏 and concurrent scheduling decision L, R are
inherited from SecCSL (cf. Section 4.3), and the new actions arise
from the execution steps of the commands discussed in this section.
The key transitions are shown in Fig. 6. Heap access through an
invalid pointer instead produces an (abort) successor configuration
(but still exposes the same action in the schedule). The rule for
memory writes (stores) is analogous to that of loads. Formulated
this way, the extra provisions or security in terms of the action
labels do not in any way constrain the program execution, it just
exposes the necessary information for a later analysis.

We define attacker knowledge based on the observation that they
can make of a schedule and what can be learned to reduce one’s
uncertainty about possible initial states resp. secrets. The first main
result, Theorem 5.6, formalizes the promise made in Section 2 that
any gain in knowledge is linked to an earlier assumption failure.

Definition 5.1 (Attacker-visible actions and schedules). For an ac-
tion 𝑎, visibleℓ (𝑎) keeps 𝑎 if it is visible to an ℓ attacker and erases it
into 𝜏 otherwise. This definition is lifted to schedules in the obvious

(run 𝐿, assume 𝜌, 𝑠, ℎ)
⟨Assm 𝑠 𝜌 ⟩

−−−−−−−−−−−→ (stop 𝐿, 𝑠, ℎ)

(run 𝐿, output ℓ′ 𝑒𝑣, 𝑠, ℎ)
⟨Out Jℓ ′K𝑠 J𝑒𝑣K𝑠 ⟩−−−−−−−−−−−−−−−−→ (stop 𝐿, 𝑠, ℎ)

(run 𝑥 := [𝑒𝑝], 𝐿, 𝑠, ℎ)
⟨Load J𝑒𝑝K𝑠 ⟩

−−−−−−−−−−−−→ (stop 𝐿, 𝑠′, ℎ)
for 𝑠′ = 𝑠

(
𝑥 := ℎ(J𝑒𝑝K𝑠)

)
if J𝑒𝑝K𝑠 ∈ dom(ℎ)

(run 𝐿, trace 𝑒, 𝑠, ℎ)
⟨Trace J𝑒K𝑠 ⟩−−−−−−−−−−−−→ (stop 𝐿, 𝑠, ℎ)

Figure 6: Semantic rules for program execution.

way as visibleℓ (𝜎).
visibleℓ (𝜏) = 𝜏 visibleℓ (L) = L

visibleℓ (Assm 𝑠 𝜌) = 𝜏 visibleℓ (R) = R

visibleℓ (Trace 𝑒) = 𝜏 visibleℓ (Load 𝑝) = Load 𝑝

visibleℓ (Store 𝑝) = Store 𝑝

visibleℓ (Out ℓ′ 𝑣) = Out ℓ′ 𝑣 if ℓ ⊑ ℓ′ else 𝜏

The concurrent schedule is always visible and so are memory
accesses. An output action is visible only for an attacker who is
allowed to observe the respective channel. In contrast, assumption
steps are modeled to not be visible because they do not constitute
actual observations, albeit an attacker with knowledge about the
program’s source code knows their occurrence and the assumed
formula 𝜌 , due to the fact that executions are always matched.

Definition 5.2 (Observably equivalent schedules). Two schedules 𝜎
and 𝜎′ are observably equivalent for an ℓ attacker, written 𝜎 ≈ℓ 𝜎

′,
if their ℓ-visibility projection is the same:

𝜎 ≈ℓ 𝜎
′ =̂ visibleℓ (𝜎) = visibleℓ (𝜎′)

Note that this implies that the length of 𝜎 and 𝜎′ is the same.
Information leakage is phrased in the standard knowledge-based

style [5, 7, 16, 18]. This style of security property talks about the
attacker’s knowledge in order to state that the attacker doesn’t
learn anything that should not have been revealed to them. Knowl-
edge is captured in terms of the attacker’s uncertainty about the
program’s secret data that the attacker is not supposed to learn.

, , Murray et al.

Specifically, uncertainty is the complement of knowledge so de-
creased attacker uncertainty corresponds to an increase in attacker
knowledge. The following definition captures this intuition. To-
gether with visibleℓ (_) it serves as the formal specification of the
adversarial capabilities outlined in Section 3.

Definition 5.3 (Attacker Uncertainty). For a given initial state
(𝑠, ℎ) and schedule 𝜎 for command 𝑐 , the attacker must accept as
explanations all possible initial states (𝑠′, ℎ′) which can produce an
observably equivalent schedule 𝜎′:

uncertaintyℓ (𝑃, 𝜎, 𝑐, 𝐿, 𝑠, ℎ) =̂{
(𝑠′, ℎ′) | ∃ 𝜎′ 𝑘′ . (𝑠, ℎ), (𝑠′, ℎ′) ⊨ 𝑃 ★ invs(𝐿)

∧ (run 𝐿, 𝑐, 𝑠′, ℎ′) 𝜎 ′
−→∗ 𝑘′ ∧ 𝜎 ≈ℓ 𝜎

′ }
The property assesses how the attacker’s uncertainty changes

over time. Specifically we can use it to compare the attacker’s
uncertainty before and after each execution step. Any decrease in
uncertainty represents new information that the attacker learned
from that step. The property requires that this change in knowledge
must be bounded by what the attacker is permitted to learn by that
step of execution: For the policy-agnostic guarantee, each execution
step is allowed to reveal (i.e. decrease the attacker’s uncertainty
about) only failed assume 𝜌 steps, which in turn correspond to
unsatisfied Assm 𝜌 actions in the schedule:

Definition 5.4 (Assumption failure). An assumption failure occurs
at position 𝑛 with 𝑛 < |𝜎 | and 𝑛 < |𝜎′ | in a pair of schedules, if at
that point both contain the same assumption 𝜌 , and that assumption
is not satisfied between the associated stores recorded in the action.

assumption-failedℓ (𝑛, 𝜎, 𝜎 ′)
=̂ ∃𝑠 𝑠′ 𝜌. 𝜎𝑛 = Assm 𝑠 𝜌 and 𝜎′𝑛 = Assm 𝑠′ 𝜌 and 𝑠, 𝑠′ ̸ |=ℓ 𝜌

Complementary to uncertainty, we formalize what the ℓ-level
attacker is allowed to learn from a single execution step following a
known execution prefix from initial state (𝑠, ℎ)with schedule𝜎 . This
will be defined as a set assumed-releaseℓ (𝑃, 𝜎, 𝑐, 𝐿, 𝑠, ℎ,) of initial
states (𝑠′, ℎ′) which the attacker is allowed to exclude from their
uncertainty by observing such an additional step.

Definition 5.5 (Release by assumption).

assumed-releaseℓ (𝑃, 𝜎, 𝑐, 𝐿, 𝑠, ℎ) =̂{
(𝑠′, ℎ′) | ∃ 𝜎′ 𝑘′ . (𝑠, ℎ), (𝑠′, ℎ′) ⊨ 𝑃 ★ invs(𝐿)

∧ (run 𝐿, 𝑐, 𝑠′, ℎ′) 𝜎 ′
−→∗ 𝑘′ ∧ 𝜎 ≈ℓ 𝜎

′

∧ ∃ 𝑛. 𝑛 < |𝜎 | ∧ 𝑛 < |𝜎′ |
∧ assumption-failed(𝑛, 𝜎, 𝜎′)

}
This definition mirrors Definition 5.3 except that only those

initial states (𝑠′, ℎ′) are kept that can lead to a failed assumption.

Theorem 5.6 (Policy-agnostic security guarantee). If ⊢ℓ
{𝑃} 𝑐 {𝑄} then for a major run (run 𝐿, 𝑐, 𝑠, ℎ) 𝜎1−→∗ 𝑘1 the knowledge
gain from one additional step 𝑘1

𝜎2−→ 𝑘2, expressed as the difference
in uncertainty, is bounded by the release condition:

uncertaintyℓ (𝑃, 𝜎1, 𝑐, 𝐿, 𝑠, ℎ) \ uncertaintyℓ (𝑃, 𝜎1 · 𝜎2, 𝑐, 𝐿, 𝑠, ℎ)
⊆ assumed-releaseℓ (𝑃, 𝜎1, 𝑐, 𝐿, 𝑠, ℎ)

6 CONFORMANCEWITH POLICIES

With assumed-releaseℓ (_) we have a precise characterization of
possible information leaks due to failed assumptions. Next we show
how these leaks can be justified and formally bounded in terms of
high-level declassification policies:

Definition 6.1 (Declassification policy). A declassification policy
D(tr) = 𝜑D (tr) { 𝜌D (tr) specifies a condition 𝜑D that states
when the policy applies and a relational release formula 𝜌D that
encodes what information is allowed to be released then.

Both constituents 𝜑D and 𝜌D may mention the current trace
tr : List⟨Event⟩, a logical list of application-specific Events. In the
example from Section 2, events are just the numbers returned from
and added to the trace by avg_get_input().

It is sometimes convenient (cf. Section 7) to let the formulas
range over common auxiliary parameters ®𝑥 , where 𝜑D (tr, ®𝑥) {
𝜌D (tr, ®𝑥), abbreviates the slightly involved policy (∃ ®𝑥 . 𝜑D (tr, ®𝑥)) {
(∀ ®𝑥 . 𝜑D (tr, ®𝑥) =⇒ 𝜌D (tr, ®𝑥)). The intuitive reading is just that
the condition may bind some values that are later referred to by
the release which encodes a policy that declassifies different infor-
mation depending on a number of cases in 𝜑D .

In order to track the trace tr throughout the verification, we ex-
tend the assertions by a designated abstract history predicateH(_),
and for the sake of presentation we also introduce an explicit mech-
anism to extend this trace by an additional command trace 𝑒 (in
Verdeca this is instead realized as library annotations), where
expressions tr and 𝑒 denote a trace resp. event,

assertion 𝑃 ::= · · · | H (tr) command 𝑐 ::= · · · | trace 𝑒
where H(tr) says that current value of expression tr is the trace
until now, and trace 𝑒 is a specification command that extends this
trace by an additional event, denoted by expression 𝑒 .

The purpose of an audit of a given verification with respect to a
policy is to inspect each assume 𝜌 statement placed in the program.
To that end, we need to refer to the verification context at that point,
specifically the assertion/path condition 𝑃 and trace tr that occurs
in the sub-derivation ⊢ℓ {𝑃 ★H(tr)} assume 𝜌 ; . . . {. . .} of that
program part. A policyD is honored if 𝑃 implies𝜑D and 𝜌D with 𝑃
implies 𝜌 at every such occurrence of assumptions.

In the same spirit as the rest of the paper, we show how the
concern of policy adherence can be separated out of the verification
of the program implementation (cf. comments at the end of Sec-
tion 2) in such a way that we can still draw a connection between
all respective constituents. We define extended judgements

⊢ℓ {𝑃 ★H(tr)} 𝑐 {𝑄 ★H(tr′)} ⊲𝐴
that now mention explicitly the history predicate which is threaded
through the proof alongside all other assertions [14, 36, 64, 72].
Moreover, we instrument the proof rules to produce a set 𝐴 of
audit triples (𝑃, tr, 𝜌) from each occurrence of an assumption as the
verification context mentioned above.

Some interesting proof rules are shown in Fig. 7: Emitting a trace
event 𝑒 symbolically extends the trace expression bound by history
predicate H(_) to tr · ⟨𝑒⟩. Assumptions produce an audit triple
that records the current proof context 𝑃, tr alongside the assumed
formula 𝜌 . As an example for syntax-directed rules, sequential
composition merges the results from both commands. Rule Frame

Assume but Verify: Deductive Verification of Leaked Information in Concurrent Applications (Extended Version) , ,

⊢ℓ {H (tr)} trace 𝑒 {H (tr · ⟨𝑒⟩)} ⊲ ∅
Emit

⊢ℓ {𝑃 ★H(tr)} assume 𝜌 {𝑃 ★ 𝜌 ★H(tr)} ⊲ {(𝑃, tr, 𝜌)}
Assume

⊢ℓ {𝑃} 𝑐1 {𝑄} ⊲𝐴1 ⊢ℓ {𝑄} 𝑐2 {𝑅} ⊲𝐴2

⊢ℓ {𝑃} 𝑐1; 𝑐2 {𝑅} ⊲𝐴1 ∪𝐴2
Seq

⊢ℓ {𝑃} 𝑐 {𝑄} ⊲𝐴 mod(𝑐) ∩ fv(𝐹) = ∅
⊢ℓ {𝑃 ★ 𝐹 } 𝑐 {𝑄 ★ 𝐹 } ⊲ {(𝑃 ★ 𝐹, tr, 𝜌) | (𝑃, tr, 𝜌) ∈ 𝐴}

Frame

Figure 7: Proof rules for event histories and audit triples.

shows that any frame condition 𝐹 that is preserved by the execution
of 𝑐 can be adjoined to the audit triples after the fact, such that
alternatively rule Assume could have been formulated as a “small
axiom” with emp instead of a general 𝑃 , i.e., framing is compatible
with recording proof contexts. Now we can formalize policy audit.

Definition 6.2 (Policy audit). A verification ⊢ℓ {𝑃★H(tr)} 𝑐 {𝑄★

H(tr′)} ⊲ 𝐴 is correctly audited wrt. a policy D(tr) = 𝜑D (tr) {
𝜌D (tr) if for each (𝑃, tr, 𝜌) ∈ 𝐴 implications 𝑃 =⇒ 𝜑D (tr) and
𝑃 ★ 𝜌D (tr) =⇒ 𝜌 are valid.

Intuitively, audit triples are simply proof obligations for every
assumption to be justified by the declassification policy. As with
the policy-agnostic security guarantee, we now provide a semantic
guarantee that bridges between 𝐴 from the calculus and infor-
mation release by policy. We denote by trace(𝜎) the sequence
of values 𝑒 from Trace 𝑒 actions in the schedule 𝜎 , defined as
trace(𝜎) =̂ ⟨𝑒 | Trace 𝑒 ∈ 𝜎⟩ with the intention that trace(𝜎)
coincides with the evaluation of the trace expression tr in any post-
state that asserts H(𝑡𝑟). Moreover, as 𝜑D (_) can be regarded a
formula of one variable, say tr, we write 𝜎 |= 𝜑D when J𝜑D (tr)K𝑠
is true for state 𝑠 (tr) = trace(𝜎) (all other variables in 𝑠 are irrel-
evant), similarly, we write 𝜎, 𝜎′ |= 𝜌D (tr) for 𝑠, 𝑠′ |= 𝜌D (tr) and
𝑠 (tr) = trace(𝜎), 𝑠′ (tr) = trace(𝜎′). We define counterparts to
assumption-failed and assumed-release with respect to policies.

Definition 6.3 (Policy exclusion). A declassification policy D =

𝜑D { 𝜌D excludes a pair of schedules (from the obligation to
prove absence of leaks), if after some number of steps 𝑛 with 𝑛 < |𝜎 |
and𝑛 < |𝜎′ | the declassification condition is satisfied but the release
formula is not:

policy-excludesℓ (𝜑D { 𝜌D , 𝑛, 𝜎, 𝜎′) =̂

𝜎 |𝑛 |= 𝜑D and 𝜎′|𝑛 |= 𝜑D and 𝜎 |𝑛, 𝜎′|𝑛 ̸ |= 𝜌D

Definition 6.4 (Release by policy). The initial states (𝑠′, ℎ′) that
an attacker may remove from their uncertainty by observing any
further step after a prefix run with schedule 𝜎 are those minor runs

that are excluded by policy D.

policy-releaseℓ (D, 𝑃, 𝜎, 𝑐, 𝐿, 𝑠, ℎ) =̂{
(𝑠′, ℎ′) | ∃ 𝜎′ 𝑘′ . (run 𝐿, 𝑐, 𝑠′, ℎ′) 𝜎 ′

−→∗ 𝑘′ ∧ 𝜎 ≈ℓ 𝜎
′

∧ ∃ 𝑛. 𝑛 < |𝜎 | ∧ 𝑛 < |𝜎′ | ∧ policy-excludes(D, 𝑛, 𝜎, 𝜎′)
}

Finally, we can state the second main result:

Theorem 6.5 (Policy-specific security guarantee). For a ver-
ified program ⊢ℓ {𝑃 ★H(⟨⟩)} 𝑐 {𝑄 ★H(tr′)} ⊲ 𝐴 and a policy 𝐷

formally audited according to Definition 6.2, for each major run
(run 𝐿, 𝑐, 𝑠, ℎ) 𝜎1−→∗ 𝑘1 with final step 𝑘1

𝜎2−→ 𝑘2 we have:

assumed-releaseℓ (𝑃, 𝜎1, 𝑐, 𝐿, 𝑠, ℎ)
⊆ policy-releaseℓ (D, 𝑃, 𝜎1, 𝑐, 𝐿, 𝑠, ℎ)

Under the conditions of Theorem 6.5, we get (owing to Theo-
rem 5.6) the ultimate property that every knowledge increase is
within the policy:

uncertaintyℓ (𝑃, 𝜎1, 𝑐, 𝐿, 𝑠, ℎ) \ uncertaintyℓ (𝑃, 𝜎1 · 𝜎2, 𝑐, 𝐿, 𝑠, ℎ)
⊆ policy-releaseℓ (D, 𝑃, 𝜎1, 𝑐, 𝐿, 𝑠, ℎ)

7 CASE STUDIES

We demonstrate the approach of this paper with several challenging
case studies that we implemented and verified using auto-active
verifier Verdeca, an extension of SecC that adds constant-time
security checks for memory access, adapts the semantics of value
classification as described in Section 4, and adds an -audit flag
which shows the audit conditions from Section 6 to the user. (In all
case studies we inline the checks of these audit obligations into the
verification, as explained at the end of Appendix A, so that Verdeca
discharges them automatically.) Verdeca is implemented in the
Scala programming language and encompasses roughly 5KLoC.
Like SecC, Verdeca mechanises the application of our extended
SecCSL logic (i.e., the application of the rules in Fig. 4 and Fig. 5) by
symbolic execution. The case-studies are written in C with logical
definitions and program annotations formulated in the specifica-
tion language of SecC. Verdeca inherits some limitations from
SecC: It supports a significant fragment of C but lacks for example
union types, taking pointers to local variables, and floating point
and bit-wise operations. Numeric types are treated as unbounded
mathematical integers (as is common in auto-active verifiers) so
that the verification is not sound in the presence of overflows. The
absence of overflow can be proved in Verdeca by adding assertions
on integer operations.

The formal soundness theorems Theorem 6.5 and Theorem 5.6,
mechanised in Isabelle/HOL, apply to the simple command lan-
guage formalised in this paper (whose semantics is given in Fig. 10).
So Verdeca’s soundness follows from those theorems, so long as
Verdeca correctly implements the semantics of its subset of C
and correctly implements the rules of Fig. 4 and Fig. 5. Aside from
treating ints as unbounded integers we believe Verdeca is faith-
ful to the formal program semantics and correctly implements the
logic. Both of these assumptions could in principle be discharged by
applying orthogonal ideas on validating the output of auto-active
verifiers [45, 63].

, , Murray et al.

Case Study Proof

Ratio

Verified

SLOC

Unverified

SLOC

Effort

(pw)

Location Service 1.9 210 124 3
Auction Server 4.3 187 79 3.5
Wordle 5.9 47 81 0.3
Private Learning 2.5 315 114 6

Table 1: Case study statistics. We report the size of the case

studies in Source Lines of Code (SLOC), including the size of

the Verified code; the Unverified code; and the Proof Ratio,

the ratio of the size of the proof (definitions, lemmas, speci-

fications etc. as Verdeca annotations) to that of the verified

code. We also report the total Effort in person-weeks (pw).

lock
…s

p loccur

lock-1

release
location
thread

budget b

replenish
thread

get_real_loc()

add_noise()

log_replenish()

report
thread

print_loc()

Figure 8: Architecture of the location service. External func-

tions are coloured grey.

7.1 Differentially-Private Location Service

Our first case study implements amulti-threaded, privacy-preserving
location service. Such a service might run, for instance, on a user’s
mobile phone. Its intention is to release information about the
user’s location, but in accordance with a privacy policy that imple-
ments differential privacy [33] for mobility traces [21] (i.e. traces
of reported locations for the user).

This service, whose architecture is depicted in Fig. 8, contains
three threads, that all run continuously: the release location thread
periodically releases information about the user’s location, in accor-
dance with a differential privacy policy. It copies information about
the user’s most recent physical location, obtained via the external
function get_real_loc(), into the heap location pointed to by p,
after adding noise to ensure differential privacy, using the external
function add_noise(). This function is an off-the-shelf implemen-
tation of the planar laplacian [4] geolocation privacy mechanism.
The state of the differential privacy policy is recorded in the loca-
tion pointed to by budget. Finally, this thread maintains a (linked)
list s carrying information about the user’s prior locations.

This linked list s is used in situations where the privacy budget
has been exhausted. In particular, each time noise is added to the
user’s real, private location via the external add_noise() function,
some of the user’s privacy budget is consumed. When the budget
gets sufficiently low, no new information about the user’s location
can be revealed without violating differential privacy. In this situ-
ation, the release location thread instead applies extrapolation to
predict [21] the user’s most likely current location from the loca-
tion history recorded in the linked list s. Importantly, this history
contains only values already previously released, i.e. noisy val-
ues resulting from previous applications of the differential privacy

mechanism add_noise(). Hence, releasing a location prediction
made from those values reveals no new information, while still
allowing the release location thread to provide continuous service.

The report thread periodically reports the user’s most recent
location as recorded by the release location thread in p. Finally,
the replenish budget thread periodically replenishes the privacy
budget budget, allowing the release location thread to again apply
the differential privacy mechanism to release new (noisy) location
points (rather than predictions). A global lock controls access to all
shared data structures: p, s and budget.

Security Policy. The policy ensures that the differential privacy
mechanism is appropriately applied and that no raw location data
(to which the mechanism has not been applied) is ever revealed.
Specifically, the external function print_loc() has a contract that
requires its argument is low; yet the contract for get_real_loc()
says that the returned location is high so that in the absence of
declassification, no location data can ever be revealed by the service.

The declassification policy allows releasing location data only
via the correct use of the differential privacy mechanism. Traces tr
in this example are sequences of events, each of which is either
an event Consumed (nlat, nlon), recording that the differential pri-
vacy mechanism produced a noisy location point (nlat, nlon) and
consuming a fixed positive amount 𝜖 of the privacy budget; or the
event Replenished recording that the privacy budget was replen-
ished by a fixed positive amount 𝑟 . Both 𝜖 and 𝑟 are public (low)
constants that control the strength of the privacy guarantee.

The contract for the external function add_noise() that imple-
ments the differential privacy mechanism is as follows. For brevity
we elide, via . . . in the precondition, that the argument pt is a
valid pointer to a struct point, and freely intermix ASCII and
mathematical notation.
void add_noise(struct point *pt);
_(requires ∃tr. H(tr) ...)
_(ensures ∃nlat nlon. H(tr · Consumed (nlat, nlon)))
_(ensures &pt->lat ↦→ nlat ★ &pt->lon ↦→ nlon)

Whenever this function is called an appropriate event is recorded
in the trace to remember that some privacy budget was consumed.
Similarly, Replenished events are generated by the external func-
tion log_replenish(), which is called by the replenish thread
when replenishing the budget.

The declassification policyDloc (tr, 𝑒) = 𝜑loc (tr, 𝑒) { 𝜌loc (𝑡𝑟, 𝑒)
then specifies that it is safe to declassify the value 𝑒 only when 𝑒

is the most recent point (nlat, nlon) generated by the differential
privacy mechanism add_noise() only when there is sufficient
privacy budget.

𝜑loc (tr, (nlat, nlon)) =̂H(tr) ★ count_budget(tr) ≥ 𝜖 ★

∃ 𝑡𝑟 ′ . 𝑡𝑟 = tr′ · Consumed (nlat, nlon)
𝜌loc (tr, (nlat, nlon)) =̂ (nlat, nlon) :: low

The function count_budget() (defined by straightforward recursion
on tr) iterates through tr to count up the budget remaining at the
present time—consume events add −𝜖 while replenish events add 𝑟
to the budget, which starts at 0.

This security policy demonstrates how our approach securely
handles multiple (or repeated) declassifications in the same exe-
cution of a single program: each act of declassification is justified

Assume but Verify: Deductive Verification of Leaked Information in Concurrent Applications (Extended Version) , ,

separately by appealing to the policy wrt. the trace tr at that point
in time.

It is important to note that this security policy does not verify
that the differential privacy mechanism has been appropriately
implemented; instead it verifies that it is appropriately used by the
application. In other words, this policy does not directly state a
differential privacy guarantee; however it ensures such a guaran-
tee under the assumption that the differential privacy mechanism
correctly provides the privacy guarantee represented by the de-
plenishing budget. Verifying the mechanism implementation of
course requires probabilistic reasoning and is best done using other
approaches [10]. Similar arguments apply to the private learning
case study later on (Section 7.4).

Verification. Since Verdeca does not currently support reason-
ing about floating point arithmetic, for this case study such arith-
metic (e.g. in the verified extrapolation code) is modelled using
integer arithmetic instead. This is sound since the program in-
variant and security policy do not depend on any floating-point
arithmetic. We prove the verified extrapolation code operates only
on public values, ruling out timing channels from floating point
operations [47]. The verified part of this application comprises 210
source lines of code (SLOC). Unverified code (124 SLOC) comprises
the external functions that allocate memory, acquire and release the
global lock, implement the planar laplacian mechanism (72 SLOC),
and simulate generating user location points, as well as the main()
function that sets up the threads. The proof:code ratio (proof SLOC
to verified code SLOC) is 1.9. This effort to complete this case study
was approximately 3 person-weeks (see Table 1).

7.2 Sealed-Bid Auction Server

Our second case study is a sealed-bid auction server. In such an
auction, all bids are kept secret until the auction is complete. This
prevents bidders racing to outbid one another. Our server uses
concurrency to ensure that no bidder can deny service to another
by servicing each client connection in a separate thread.

Each client bid is handled by a separate handle bid thread. A
separate close auction thread waits until the auction duration (a
fixed, public parameter) has elapsed and then closes the auction.
Both make use of external logging functions: the handle bid thread
logs incoming bids using the log_bid() external function, while
the close auction thread logs the fact that the auction has closed
using the log_closed() function. Logging is important in this case
study to provide an audit trail (e.g. in case of a disputed auction). The
close auction thread uses the external print_result() function to
print out the result of the auction, once it has been closed.

When receiving a new bid, the handle bid thread compares the
newly submitted bid to the current maximum in a constant-time
fashion, and updates the latter if the new bid is larger. Bids are pairs
(id, qt) where id is the identity of the client who submitted the bid
and qt is the amount (or quote) of the bid.

Security Policy. The top-level verified function that implements
the handle bid thread takes as its argument the bid to be handled.
The precondition on this function states that the bid is secret (high).
Thus all bids are treated as secret. The precondition on the exter-
nal print_result() function requires that its argument is public

(low). So the only way for a winner to be announced is via declas-
sification. Verdeca’s constant-time guarantee meanwhile ensures
that no information about bids can be leaked (including via timing
channels) prior to declassification.

The declassification policy states that no bid information can be
declassified until after the auction is closed. At this time the only bid
that can be declassified is the maximum bid that was received (i.e.
the auction winner). Hence, the policy allows only the winning bid
to be revealed only after the auction has closed, when the attacker
learns the winning bid and that no other bid was higher.

To capture this policy, the trace tr records two kinds of events:
Run (id, qt) represents the submission of a bid from the client with
id id and amount qt while the auction is running; Fin represents that
the auction has been closed. Each is generated by one of the exter-
nal logging functions: Run (id, qt) is generated by the log_bid()
function, while Fin is generated by log_closed(). In this way we
piggy back on the application’s normal functioning to define its se-
curity policy. The contracts for these external functions are similar
to those for add_noise() and log_replenish() from Section 7.1.

The declarative, extensional declassification policy
Dbid (tr, 𝑒) =̂ 𝜑bid (tr, 𝑒) { 𝜌bid (tr, 𝑒) is defined as follows, where 𝑒
is the value (id, qt) to be declassified.

𝜑bid (tr, (id, qt)) =̂H(tr) ★ ∃tr′ . tr = tr′ · Fin★
contains(tr′,Run (id, qt)) ★ ismax(tr′, qt)

𝜌bid (tr, (id, qt)) =̂ (id, qt) :: low

where contains(𝑥𝑠,𝑦) is the standard list function for testingwhether
list 𝑥𝑠 contains the element𝑦, and ismax(tr′, qt) checks that tr′ con-
tains only events Run (id′, qt′) for which qt ≥ qt′ and is defined
via recursion on tr′.

Policy Composition. To evaluate our approach’s ability to handle
the composition of multiple security policies, we decided to extend
the example and augment its security policy. Specifically, we added
a reserve price feature to the auction server. When run in this mode,
the user supplies a (secret) reserve price and in order for a win-
ner to be declared, there must be a bid that is greater-or-equal to
this reserve. We parameterise our verification by an arbitrary, con-
stant reserve price 𝑟 and use the abstract separation logic predicate
Reserve(𝑟) to denote that the auction is running in the reserve price
mode and that 𝑟 is the reserve price.

In this mode, all bidders learn whether any bid was ≥ the reserve
since, if it was not, no winner is announced. Therefore the policy
allows this (boolean) fact met to be declassified unconditionally
(only) once the auction is closed.

𝜑met (tr,met) =̂ H(tr) ★ ∃ tr′, 𝑟 . Reserve(𝑟) ★ tr = tr′ · Fin★
met = resmet(tr′, 𝑟)

𝜌met (tr,met) =̂ met :: low

resmet(tr′, 𝑟) is a simple recursive function that iterates through tr′
returning true as soon as it finds a bid (id, qt) for which qt ≥ 𝑟 , or
false if none is found. The declassification policy for the winning
bid is then specified as follows, using 𝜑bid and 𝜌bid defined for the

, , Murray et al.

non-reserve mode earlier.
𝜑resbid (tr, (id, qt)) =̂ H(tr) ★ Reserve(𝑟) ★ qt ≥ 𝑟 ★

𝜑bid (tr, (id, qt))

𝜌resbid (tr, (id, qt)) =̂ 𝜌bid (tr, (id, qt))
The composed declassification policy is of course the non-overlapping
disjunction of the mutually-exclusive predicates Dmet and Dresbid,
depending on the type of the second argument.

Verification. The total size of the verified code for this applica-
tion is 187 SLOC. Unverified code (79 SLOC) comprises external
functions that allocate memory, acquire and release the global lock,
implement logging and printing, as well as the code that reads from
client socket connections, and the main() function that sets up the
threads and the TCP listen socket. The size of the verified artifact for
this case study is 985 source lines, making the proof:code ratio 4.3.
This ratio is higher than previous because this case study involves
a lot of meta-level reasoning by induction about the policy itself.
This case-study required approximately 3 person-weeks of effort;
adding the reserve price feature added 4 person-days (see Table 1).

7.3 Wordle

Our third case study is a constant-time implementation of the popu-
lar game Wordle. The implementation is a simple server that allows
players to connect and to guess a pre-chosen 5-letter word𝑤 . In re-
sponse to a player submitting her guess 𝑔, the server replies with a
5-byte response 𝑟 . The 𝑖th byte 𝑟𝑖 of the response provides informa-
tion about the 𝑖th letter 𝑔𝑖 of the guess in relation to the pre-chosen
word𝑤 : 0 (black) indicates that 𝑔𝑖 is not present anywhere in𝑤 ; 1
(yellow) that it is present in𝑤 at some index 𝑗 for which 𝑔 𝑗 ≠ 𝑤 𝑗 ;
2 (green) that 𝑔𝑖 = 𝑤𝑖 . The server runs a separate thread to service
each client connection.

Security Policy. The security policy says that the pre-chosen
word 𝑤 is secret: 𝑤 :: high. Each player 𝑝 is assigned a distinct
security level ℓ𝑝 . A player’s guess 𝑔 is known only to herself: 𝑔 :: ℓ𝑝 ,
encoded in the postcondition of the external library function that
retrieves the player’s guess. The external function that transmits
the server’s response back to the player requires in its precondition
that the response 𝑟 is allowed to be known to the player: 𝑟 :: ℓ𝑝 .
Since 𝑟 is a function of𝑤 , this requires declassification.

The policy condition 𝜑word (tr) for the declassification policy
therefore requires that the player has submitted a most recent
guess𝑔, for the pre-chosen word𝑤 , which is encoded in the trace by
appropriate events that record together for each submitted guess 𝑔
the player 𝑝 who submitted it as well as the guess 𝑔 itself. An
abstract separation logic predicate is used to remember which is the
pre-chosen word𝑤 (similar to the Reserve predicate of Section 7.2)

The policy release formula 𝜌word (tr) is more interesting. It spec-
ifies what information player 𝑝 (with security level ℓ𝑝) is allowed
to learn after submitting guess 𝑔 for the pre-chosen word 𝑤 , and
requires that this information is not revealed to anyone else. Its
core is the following:

∀𝑖 .𝑖 :: low =⇒ (𝑖 ≥ 0 ∧ 𝑖 < length(𝑤) =⇒ (𝑤𝑖 = 𝑔𝑖) :: ℓ𝑝) ★

ccontains(𝑤,𝑔,𝑔𝑖 , length(𝑤)) :: (𝑤𝑖 ≠ 𝑔𝑖?ℓ𝑝 : high)
The first conjunct says the player is allowed to learn whether each
letter 𝑔𝑖 of the guess is equal to the corresponding letter of the

word 𝑤𝑖 . The second conjunct says that additionally, if 𝑔𝑖 ≠ 𝑤𝑖 ,
then the player is allowed to learnwhether𝑔𝑖 is contained elsewhere
in the word at some location 𝑗 for which𝑤 𝑗 ≠ 𝑔 𝑗 . That is the result
returned by the function ccontains(𝑤,𝑔,𝑔𝑖 , length(𝑤)) which is
defined by straightforward recursion on the length of the word.
Specifically, ccontains(𝑤,𝑔, 𝑐, 𝑛) returns true if 𝑐 is contained in the
first 𝑛 characters of𝑤 at some location 𝑗 where𝑤 𝑗 ≠ 𝑐 .

Note that this security guarantee ensures the server does not
leak information in its timing behaviour about the player’s guess,
which might otherwise be exploited by other players to draw extra
inferences about the word𝑤 beyond what they could deduce from
their guesses alone.

Table 1 reports the size and effort for this case study. The sig-
nificantly higher proof:verified code ratio is because these proofs
contain a large amount of generic meta-level reasoning (e.g. about
lists and strings, etc.) required for this case study.

7.4 Private Learning

Our fourth case study investigates the application of our ideas to
secure, private learning. We consider a scenario in which a client
wishes to compute a model, possibly in collaboration with others,
over very sensitive data (e.g. parental income, race, and gender to
predict earnings distributions, incarceration rates [22–24], survival
prediction of lung cancer patients [31], etc.). It is common for such
models to be computed in hardware-supported secure enclaves [42,
43, 48, 55, 75] provided by trusted execution environments like
Intel SGX [54] and ARM TrustZone [3], to defend against data
theft including against the host operating system. Here, Verdeca’s
constant-time guarantee is especially relevant, given that TEEs are
known to leak data via various side-channels [15, 49, 56, 57, 67];
enforcing constant-time ensures side-channels cannot be exploited.

In this case study, a client is invoked with initial model parame-
ters 𝜃0. It runs T training iterations. At each iteration 𝑡 (1 ≤ 𝑡 ≤ T)
it refines the model parameters, producing new ones 𝜃𝑡+1. It does
so by applying differentially-private gradient descent [1] (DP-GD),
in which a noisy gradient against the model’s loss function is com-
puted and then used to refine the model parameters. The goal is to
ensure that the refined model 𝜃T+1 does not leak too much infor-
mation about the sensitive training data. For simplicity, our current
implementation learns a linear model over the training data. We
refer to the process in which 𝜃T+1 is computed from 𝜃0 as a training
epoch, comprising T training iterations.

Each training iteration consumes 𝜖 privacy budget; by compo-
sition, each epoch consumes T · 𝜖 . As in the location service case
study (Section 7.1), a separate thread may periodically replenish
that budget, if desired. This design allows the client to be deployed
in a federated learning setup in which clients periodically provide
their updated model parameters 𝜃T+1 to a central server, which then
e.g. computes the average across all client models, before sending
that average back to each client to use as 𝜃0 for a subsequent train-
ing epoch. Distrusting clients can thus compute a shared model
without revealing their sensitive data to each other, nor the server.

Security Policy. The initial model parameters 𝜃0 are low, but
the client’s training data over which the updated parameters 𝜃T+1
are computed are high. The updated parameters are required to be
low, and so must be declassified.

Assume but Verify: Deductive Verification of Leaked Information in Concurrent Applications (Extended Version) , ,

Similarly to the location service (Section 7.1), traces record events
to remember when 𝜖 privacy budget is consumed (on each training
iteration) and when the budget is replenished. They also record
events to remember when initial model parameters are received by
the client at the start of each epoch, and when updated model pa-
rameters are released by the client at the end. Hence the declarative
policy says that the updated model parameters can be declassified
only when they have been correctly computed (T training itera-
tions have occurred in the most recent epoch), for which there was
sufficient privacy budget T · 𝜖 available before the epoch began.

Verification. The verified part of this case study comprises 315
SLOC, and 114 unverified SLOC whose functionality is similar to
the prior case studies. The total verified artifact comprises 1108
source lines, yielding a proofs:code ratio of 2.5. No effort was made
to optimise this ratio and indeed these proofs contain a certain
amount of duplicated lemmas from other case studies.

8 CONCLUSION AND RELATEDWORK

We presented a principled methodology for proving secure declas-
sification for non-trivial, concurrent, programs. We decompose the
problem into (a) proving that the program only leaks information
it has explicitly declassified (via assume statements); and (b) au-
diting the declassifications against a declarative security policy D
to ensure that all leaks accord with the policy. We provide a sound
program logic, supported by the auto-active verifier Verdeca and
applied it to reason about the implementations of various case
studies on the order of hundreds of source lines of code.

In practice, one can of course choose to inline the policy audit
(Definition 6.2) into the verification (this is illustrated at the end
of Appendix A), or alternatively represent the declassification step
that appeals to a policy by a specification-only procedure with
precondition 𝜑D and postcondition 𝜌D ; or alternatively to place
the respective audit conditions into the code. By disentangling
contributions (a) and (b) in our formal development we contribute
a justification for this kind of reasoning with respect to a semantic
characterization of attacker knowledge [26]. Similarly, our ideas
are not necessarily tied to the presentation as an extension of the
specific foundation SecCSL. With the appropriate care to semantic
variations (e.g. timing-sensitivity), we think it is feasible to adapt the
approach to other foundations like modular product programs [35]
as implemented in Viper.

Prior work on practical secure declassification includes the veri-
fication of the kernel of a conference management system [66], a
social media platform [12] and its distributed successor [11]. These
works proved variants of the generic security property of Bounded
Deducibility [65], which is similar to declassification policies D.
The proofs use manual unwinding in Isabelle/HOL, over an abstract
program representation of I/O automata. Li et al. [52] verified secure
declassification policies while verifying a 3.8K SLOC Linux KVM
hypervisor, in the proof assistant Coq. Their policies were encoded
non-declaratively by artificially modifying the semantic model to
replace declassified sensitive data with non-sensitive data, allowing
declassification to be proved in terms of standard noninterference.

Banerjee et al. [9] enhance the knowledge-based security prop-
erty of Askarov and Sabelfeld [7] with relational assumptions (not
using that term), and propose enforcement using a security type

system together with relational verification of the declassifying
code. Their declassification policies combine the assumption with
an assertion, which should refer to ghost state modeling external
observations. Their formalization is for deterministic sequential
programs and does not include the requisite relational logic. We
show the approach can be applied to concurrent programs as well.
We decouple meaning of assume and meaning of policies (cf. their
Def 5.5), such that assume statements have meaning independently
of a stated policy. Our proof system (Section 4) and audits (Section 6)
provide a way to formally establish the requirements outlined by
their Definition 6.2 points 2 and 3. Our explicit trace predicate
H(tr) realizes their suggested ghost state. By contrast with their
suggestion to use a type system for some relational reasoning, we
use only the proof system, which encompasses relational reasoning.

Balliu et al. [8] observe that knowledge-based properties like
these are closely related to standard semantics of epistemic logic,
and show how several properties from the literature can be ex-
pressed in epistemic temporal logic (but this work does not address
verification of such properties, nor concurrent programs).

Askarov et al. [6] formulate knowledge-based security for moni-
toring of concurrent programs with synchronization in the form of
barriers; their monitor is hybrid in the sense that it relies on an ora-
cle for static analysis of branches not taken. Compared with a logic
or static analysis, monitoring has the advantage that it can allow use
of a program under conditions when its execution is secure, even
if the program is not secure in general. Monitoring has the disad-
vantage of significant runtime overhead. Owing to nuanced use of
rely-guarantee reasoning and annotations that designates assump-
tions a thread makes about locality of shared variables (adapted
from Mantel et al. [53]), their monitor is factored into local and
global parts and avoids the need for additional synchronization.

There is an extensive literature on verification of constant-time
security properties; a recent example is Shivakumar et al. [73] which
also addresses the role of compilers in mitigation. Language based
mitigations of timing channels have been studied since Russo [69].

There is also an extensive literature on information flow for
concurrent programs. Prior to the emergence of knowledge-based
formulations many variations were based on specialized bisimula-
tions (e.g., Sabelfeld and Sands [70]). There are tradeoffs between
permissiveness and compositionality of the different properties (see
e.g., Mantel et al. [53]), and differing models are of interest depend-
ing on adversary models. Surprisingly the property of Sabelfeld and
Sands [70] is decidable [30] provided the data model is sufficiently
simple for the expression language to be decidable.

The Veronica logic proves secure declassification for shared-
memory concurrent programs [72]. Its security property is also
formulated as a knowledge-based one. It is more permissive than our
constant-time property in that it can tolerate some secret-dependent
branches. However, to avoid occlusion anomalies [71], such branch-
ing is disallowed for secrets involved in declassification.

Veronica supports only unary (non-relational) assertions, the
entire logic is designed around and fundamentally tied to this
principle. Lacking relational assertions like 𝑒 :: ℓ , however, lim-
its expressiveness and precludes scalability. Instead of writing
𝑒 :: low for example, in Veronica one has to precisely spec-
ify the value of expression 𝑒 and where it was sourced from, e.g.
𝑒 = 𝑥 + 5 ∧ 𝑥 = Low_Inputs[3] would say that 𝑒 is the sum of the

, , Murray et al.

third input obtained from a low source and the constant five. Writ-
ing invariants (the hard part of verification) in this style quickly
becomes impractical, notably for advanced concepts like pointer
structures. For that reason Veronica is not adequate for programs
over arrays or pointers (none of their examples uses them). Lack
of relational assertions also means that Veronica cannot encode
declassification policies like that of the Wordle case study. From
a more practical perspective, Veronica is not implemented in a
dedicated auto-active verifier like our tool, Verdeca. Overall, our
case studies from Section 7 are far beyond the scope what can
reasonably be verified in Veronica and this assessment has been
confirmed by Schoepe et al. [72] in personal communication.

Smith enforces a form of secure declassification called Qualified
Release via so-called declassification predicates [74]. Declassification
occurs via dedicated declassify statements, annotated by unary
predicates 𝑃 (𝑒) over the value 𝑒 to be declassified that are evaluated
in the program’s initial state. This notion is soundly enforced in a
security type system, encoded in the auto-active verifier Dafny, and
applied to programs of a few SLOC each against simple policies.

Our work highlights the difficulty of proving strong constant-
time guarantees for intentionally-leaky application code: such rea-
soning necessarily treats implementation concerns and so cannot be
performed on an abstract model alone. It would be interesting there-
fore to extend existing constant-time programming languages [20]
with support for rich security policies and declassification.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for their comments
and insightful suggestions that enabled us to improve this paper.

This research was sponsored by the U.S. Department of the Navy,
Office of Naval Research, under award N62909-18-1-2049. Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect
the views of the Office of Naval Research.

This material is based upon work supported by the Common-
wealth of Australia Defence Science and Technology Group, Next
Generation Technologies Fund (NGTF)

Naumann was supported in part by NSF award CNS-1718713.

REFERENCES

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
ACM CCS. 308–318.

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and
Michael Emmi. 2016. Verifying constant-time implementations. In USENIX Secu-
rity. 53–70.

[3] Tiago Alves and Don Felton. 2004. TrustZone: Integrated Hardware and Software
Security, White Paper. ARM, July (2004).

[4] Miguel E. Andrés, Nicolás E. Bordenabe, Konstantinos Chatzikokolakis, and
Catuscia Palamidessi. 2013. Geo-Indistinguishability: Differential Privacy for
Location-Based Systems. In ACM CCS. 901––914.

[5] Aslan Askarov and Stephen Chong. 2012. Learning is change in knowledge:
Knowledge-based security for dynamic policies. In IEEE CSF. 308–322.

[6] Aslan Askarov, Stephen Chong, and Heiko Mantel. 2015. Hybrid Monitors for
Concurrent Noninterference. In IEEE CSF. 137–151.

[7] Aslan Askarov and Andrei Sabelfeld. 2007. Gradual Release: Unifying Declassifi-
cation, Encryption and Key Release Policies. In IEEE S&P. 207–221.

[8] Musard Balliu, Mads Dam, and Gurvan Le Guernic. 2011. Epistemic temporal
logic for information flow security. In ACM PLAS.

[9] Anindya Banerjee, David A Naumann, and Stan Rosenberg. 2008. Expressive
declassification policies and modular static enforcement. In IEEE S&P. 339–353.

[10] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves
Strub. 2016. Proving differential privacy via probabilistic couplings. In LICS.
749–758.

[11] Thomas Bauereiß, Armando Pesenti Gritti, Andrei Popescu, and Franco Raimondi.
2017. CoSMeDis: a distributed social media platform with formally verified
confidentiality guarantees. In IEEE S&P. 729–748.

[12] Thomas Bauereiß, Armando Pesenti Gritti, Andrei Popescu, and Franco Raimondi.
2018. CoSMed: A confidentiality-verified social media platform. J. Automated
Reasoning 61, 1 (2018), 113–139.

[13] Lennart Beringer. 2012. End-to-end Multilevel Hybrid Information Flow Control.
In Asian Symposium on Programming Languages and Systems (APLAS). 50–65.

[14] Stefan Blom,Marieke Huisman, andMarina Zaharieva-Stojanovski. 2015. History-
based verification of functional behaviour of concurrent programs. In SEFM 2015
Collocated Workshops. 84–98.

[15] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In USENIX WOOT. 11.

[16] Niklas Broberg and David Sands. 2009. Flow-sensitive semantics for dynamic
information flow policies. In ACM PLAS. 101–112.

[17] Niklas Broberg and David Sands. 2010. Paralocks: role-based information flow
control and beyond. In POPL, Vol. 45. 431–444.

[18] Niklas Broberg, Bart van Delft, and David Sands. 2015. The anatomy and facets
of dynamic policies. In IEEE CSF. 122–136.

[19] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A
systematic evaluation of transient execution attacks and defenses. In USENIX
Security. 249–266.

[20] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S Wahby,
John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala, and Deian Stefan.
2019. FaCT: a DSL for timing-sensitive computation. In PLDI. 174–189.

[21] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Marco Stronati. 2014. A
Predictive Differentially-Private Mechanism for Mobility Traces. In PETS. 21–41.

[22] Raj Chetty and John N Friedman. 2019. A practical method to reduce privacy loss
when disclosing statistics based on small samples. In AEA Papers and Proceedings,
Vol. 109. 414–20.

[23] Raj Chetty, John N Friedman, Nathaniel Hendren, Maggie R Jones, and Sonya R
Porter. 2018. The opportunity atlas: Mapping the childhood roots of social mobility.
Technical Report. National Bureau of Economic Research.

[24] Raj Chetty, Nathaniel Hendren, Patrick Kline, and Emmanuel Saez. 2014. Where
is the land of opportunity? The geography of intergenerational mobility in the
United States. The Quarterly Journal of Economics 129, 4 (2014), 1553–1623.

[25] Andrey Chudnov, George Kuan, and David A. Naumann. 2014. Information Flow
Monitoring as Abstract Interpretation for Relational Logic. In IEEE CSF. 48–62.

[26] Andrey Chudnov and David A Naumann. 2018. Assuming You Know: Epistemic
Semantics of Relational Annotations for Expressive Flow Policies. In IEEE CSF.
189–203.

[27] David Clark and Sebastian Hunt. 2008. Non-Interference for Deterministic
Interactive Programs. In Formal Aspects in Sec. and Trust (LNCS), Vol. 5491.

[28] David Costanzo and Zhong Shao. 2014. A separation logic for enforcing declara-
tive information flow control policies. In POST. 179–198.

[29] David Costanzo, Zhong Shao, and Ronghui Gu. 2016. End-to-end verification of
information-flow security for C and assembly programs. In PLDI. 648–664.

[30] Mads Dam. 2006. Decidability and proof systems for language-based noninter-
ference relations. In POPL. 67–78.

[31] Timo M Deist, Frank JWM Dankers, Priyanka Ojha, M Scott Marshall, Tomas
Janssen, Corinne Faivre-Finn, Carlotta Masciocchi, Vincenzo Valentini, Jiazhou
Wang, Jiayan Chen, et al. 2020. Distributed learning on 20 000+ lung cancer
patients–The Personal Health Train. Radiotherapy and Oncology 144 (2020),
189–200.

[32] François Dupressoir, Andrew D. Gordon, Jan Jürjens, and David A. Naumann.
2014. Guiding a General-Purpose C Verifier to Prove Cryptographic Protocols. J.
Computer Security 22, 5 (2014), 823–866.

[33] Cynthia Dwork. 2006. Differential Privacy. In ICALP. 1–12.
[34] Sebastian Eggert and Ron van der Meyden. 2017. Dynamic intransitive noninter-

ference revisited. Formal Aspects of Computing 29, 6 (2017), 1087–1120.
[35] Marco Eilers, Peter Müller, and Samuel Hitz. 2018. Modular Product Programs.

In ESOP. Springer, 502–529.
[36] Gidon Ernst, Alexander Knapp, and Toby Murray. 2022. A Hoare Logic with

Regular Behavioral Specifications. In International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA).

[37] Gidon Ernst and Toby Murray. 2019. SecCSL: Security Concurrent Separation
Logic. In International Conference on Computer Aided Verification (CAV). 208–230.

[38] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3—where programs
meet provers. In ESOP. 125–128.

[39] Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021. Compositional Non-
Interference for Fine-Grained Concurrent Programs. In IEEE S&P. 1416–1433.

[40] Joseph Goguen and José Meseguer. 1982. Security Policies and Security Models.
In IEEE S&P. 11–20.

Assume but Verify: Deductive Verification of Leaked Information in Concurrent Applications (Extended Version) , ,

[41] Alexey Gotsman, Josh Berdine, and Byron Cook. 2011. Precision and the con-
junction rule in concurrent separation logic. ENTCS 276 (2011), 171–190.

[42] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett
Witchel. 2018. Chiron: Privacy-preserving machine learning as a service. arXiv
preprint arXiv:1803.05961 (2018).

[43] Nick Hynes, Raymond Cheng, and Dawn Song. 2018. Efficient Deep Learning on
Multi-Source Private Data. arXiv:1807.06689 [cs.LG]

[44] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx,
and Frank Piessens. 2011. VeriFast: A powerful, sound, predictable, fast verifier
for C and Java. In NASA Formal Methods Symposium. Springer, 41–55.

[45] Bart Jacobs, Frédéric Vogels, and Frank Piessens. 2015. Featherweight verifast.
Logical Methods in Computer Science 11 (2015).

[46] Aleksandr Karbyshev, Kasper Svendsen, Aslan Askarov, and Lars Birkedal. 2018.
Compositional Non-Interference for Concurrent Programs via Separation and
Framing. In POST.

[47] David Kohlbrenner and Hovav Shacham. 2017. On the effectiveness of mitigations
against floating-point timing channels. In USENIX Security. 69–81.

[48] Roland Kunkel, Do Le Quoc, Franz Gregor, Sergei Arnautov, Pramod Bhatotia,
and Christof Fetzer. 2019. TensorSCONE: A Secure TensorFlow Framework using
Intel SGX. arXiv:1902.04413 [cs.CR]

[49] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In USENIX Security. 557–574.

[50] K Rustan M Leino. 2010. Dafny: An automatic program verifier for functional
correctness. In LPAR. 348–370.

[51] K Rustan M Leino and Michał Moskal. 2010. Usable auto-active verification. In
Usable Verification Workshop. http://fm.csl.sri.com/UV10.

[52] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui. 2021. A
Secure and Formally Verified Linux KVM Hypervisor. In IEEE S&P.

[53] Heiko Mantel, David Sands, and Henning Sudbrock. 2011. Assumptions and
Guarantees for Compositional Noninterference. In IEEE CSF. 218–232.

[54] FrankMcKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative Instructions
and Software Model for Isolated Execution. In HASP. Article 10, 1 pages.

[55] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and
Nicolas Kourtellis. 2021. PPFL: privacy-preserving federated learning with trusted
execution environments. arXiv preprint arXiv:2104.14380 (2021).

[56] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. Cachezoom:
How SGX amplifies the power of cache attacks. In International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 69–90.

[57] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar.
2020. CopyCat: Controlled Instruction-Level Attacks on Enclaves. In USENIX
Security. 469–486.

[58] Peter Müller, Malte Schwerhoff, and Alexander J Summers. 2016. Viper: A verifi-
cation infrastructure for permission-based reasoning. In VMCAI. 41–62.

[59] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke,
Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. 2013. seL4: from General
Purpose to a Proof of Information Flow Enforcement. In IEEE S&P. 415–429.

[60] Toby Murray, Robert Sison, and Kai Engelhardt. 2018. COVERN: A Logic for
Compositional Verification of Information Flow Control. In EuroS&P.

[61] Toby Murray and Paul C. van Oorschot. 2018. BP: Formal Proofs, the Fine Print
and Side Effects. In IEEE Cybersecurity Development Conference (SecDev). IEEE.

[62] Peter W O’Hearn. 2004. Resources, concurrency and local reasoning. In Interna-
tional Conference on Concurrency Theory (CONCUR). Springer, 49–67.

[63] Gaurav Parthasarathy, Peter Müller, and Alexander J Summers. 2021. Formally
validating a practical verification condition generator. In International Conference
on Computer Aided Verification (CAV). 704–727.

[64] Willem Penninckx, Amin Timany, and Bart Jacobs. 2019. Specifying I/O using
abstract nested Hoare triples in separation logic. In FTfJP. 1–7.

[65] Andrei Popescu, Thomas Bauereiss, and Peter Lammich. 2021. Bounded-
deducibility security. In ITP.

[66] Andrei Popescu, Peter Lammich, and Ping Hou. 2021. CoCon: A conference man-
agement system with formally verified document confidentiality. J. Automated
Reasoning 65, 2 (2021), 321–356.

[67] Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Capkun. 2020. Frontal
Attack: Leaking Control-Flow in SGX via the CPU Frontend. In USENIX Security.
663–680.

[68] John C Reynolds. 2002. Separation logic: A logic for shared mutable data struc-
tures. In LICS. 55–74.

[69] Alejandro Russo. 2008. Language Support for Controlling Timing-Based Covert
Channels. Ph.D. Dissertation. Chalmers University of Technology.

[70] Andrei Sabelfeld and David Sands. 2000. Probabilistic Noninterference for Multi-
Threaded Programs. In IEEE CSFW. 200–214.

[71] Andrei Sabelfeld and David Sands. 2009. Declassification: Dimensions and prin-
ciples. J. Computer Security 17, 5 (2009), 517–548.

[72] Daniel Schoepe, TobyMurray, andAndrei Sabelfeld. 2020. VERONICA: Expressive
and Precise Concurrent Information Flow Security. In IEEE CSF. 79–94.

[73] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire, Vincent
Laporte, and Swarn Priya. 2022. Enforcing Fine-grained Constant-time Policies.
In ACM CCS. 83–96.

[74] Graeme Smith. 2022. Declassification Predicates for Controlled Information
Release. In ICFEM. 298–315.

[75] Florian Tramèr and Dan Boneh. 2019. Slalom: Fast, Verifiable and Private Execu-
tion of Neural Networks in Trusted Hardware. arXiv preprint arXiv:1806.03287.
In International Conference on Learning Representations (ICLR). https://arxiv.org/
abs/1806.03287

[76] Viktor Vafeiadis. 2011. Concurrent Separation Logic and Operational Semantics.
In Mathematical Foundations of Programming Semantics (MFPS). 335–351.

[77] Bart van Delft, Sebastian Hunt, and David Sands. 2015. Very static enforcement
of dynamic policies. In POST. 32–52.

[78] KangWei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin,
Tony QS Quek, and H Vincent Poor. 2020. Federated learning with differential
privacy: Algorithms and performance analysis. IEEE Transactions on Information
Forensics and Security 15 (2020), 3454–3469.

[79] Pengbo Yan and Toby Murray. 2021. SecRSL: Security Separation Logic for C11
Release-Acquire Concurrency. Proc. ACM Program. Lang. 5 (OOPSLA), 99 (2021).

[80] Jean Yang. 2015. Preventing information leaks with policy-agnostic programming.
Ph.D. Dissertation. Massachusetts Institute of Technology.

[81] Chenyi Zhang. 2011. Conditional information flow policies and unwinding
relations. In Int. Symp. on Trustworthy Global Computing (TGC). 227–241.

https://arxiv.org/abs/1807.06689
https://arxiv.org/abs/1902.04413
https://arxiv.org/abs/1806.03287
https://arxiv.org/abs/1806.03287

, , Murray et al.

A PROOF OF THE MOTIVATING EXAMPLE

Recall (Section 2) that the example of Fig. 1 we verify by defining
a resource invariant that links the input/output history tr of the
program and its state, to which the pointer struct avg_state *
st points:

inv(tr, st) =̂ H(tr) ∧ st->count = length(tr)
∧ st->sum = sum(tr)

Recall that we attach this resource invariant to the lock, which
is implemented by the avg_lock() and avg_unlock() functions
that, respectively, soundly acquire and release this invariant [37]
by ensuring that it always holds whenever the shared state st
is accessed. This we specify via standard annotations as follows
(recalling that result in a postcondition refers to the function’s
return value):

struct avg_state * avg_lock();
_(ensures inv(𝑡𝑟, result))

void avg_unlock(struct avg_state *st);
_(requires inv(𝑡𝑟, st))

Recall that the declassification policy D(tr) for this example is:

D(tr) =̂ length(tr) ≥ 6 { sum(tr)/length(tr) :: low

The average of the inputs can be declassified so long as there are at
least 6 inputs.

Then the proof appears in Fig. 9. The proof is carried out using
the rules of our logic (Section 4), automated by Verdeca; interme-
diate proof states we annotate in purple, so the reader can see how
the proof progresses. Doing so proves the policy-agnostic security
guarantee: the program leaks no more information than that con-
tained in assume statements. To prove all leakage is in accordance
with the declassification policy, we apply the rules of Section 6 to
collect audit obligations. In this case, we need to prove that the
underlined path condition in Fig. 9 (what is known at the time
of the assumption) is sufficient to justify the assumption against
the declassification policy. Specifically, letting 𝑃 be the underlined
path condition, we have to check (Definition 6.2) that 𝑃 implies the
policy condition length(tr) ≥ 6 and that 𝑃 and the policy release
formula sum(tr)/length(tr) :: low together imply the assumption
avg :: low. These trivially hold, thus the program satisfies the secure
declassification against this declassification policy: the program
leaks no more information than that allowed by its declassification
policy (by Theorem 6.5).

In practice, (see Section 8) we often inline the check of the audit
obligation (Definition 6.2) into the proof, so it can be automatically
discharged by Verdeca. This can be done for instance by replacing
the line _(assume avg :: low) in Fig. 9 with the following three:
_(assert length(tr) ≥ 6) // check that 𝑃 =⇒ 𝜑D
_(assume sum(tr)/length(tr) :: low) // assume, therefore 𝜌D
_(assert avg :: low) // check that 𝑃 ★ 𝜌D =⇒ 𝜌

We explain this transformation for an arbitrary declassification
policy𝜑D { 𝜌D whose condition is𝜑D and release formula is 𝜌D ,
and for assumption _(assume 𝜌), as indicated in the comments.
The first line checks that the policy condition 𝜑D holds, under the
current path condition (called 𝑃 in Fig. 9). This is the first check of

Definition 6.2. Having proved that 𝜑D holds, the second line then
makes use of the policy release formula 𝜌D . The path condition
after the second line is therefore 𝑃 ★ 𝜌D . Thus the fourth line then
checks that the original assumption (in this case avg :: low) holds,
i.e., writing 𝜌 for this assumption, that 𝑃 ★ 𝜌D =⇒ 𝜌 , the second
check of Definition 6.2.

B PROOFS OF THE MAIN THEOREMS

The proofs of the main theorems Theorem 5.6 and Theorem 6.5 are
expressed with respect to an inductive generalization that captures
all necessary properties of two executions running in lockstep. The
respective soundness proofs will therefore rely on an intermediate
result that precisely characterizes how a major run is related to any
minor run.

Definition B.1 (Aligned actions and schedules). Two actions 𝑎
and𝑎′ are aligned wrt. a security level ℓ , written𝑎 �ℓ 𝑎′, if one of the
listed cases applies. Two schedules are aligned, written 𝜎 �ℓ 𝜎

′, if
they have the same length and their actions are point-wise aligned.

𝜏 �ℓ 𝜏 L �ℓ L R �ℓ R Load 𝑝 �ℓ Load 𝑝

Assm 𝑠 𝜌 �ℓ Assm 𝑠′ 𝜌 Trace 𝑒 �ℓ Trace 𝑒′ Store 𝑝 �ℓ Store 𝑝

Out ℓ′ 𝑣 �ℓ Out ℓ′ 𝑣 ′ if ℓ ⊑ ℓ′ =⇒ 𝑣 = 𝑣 ′

Aligned schedules capture that the type of events and formula 𝜌
for assumptions matches per step, and that an attacker cannot
learn information form memory access and from outputs (equality
of pointers 𝑝 as well as values 𝑣 , 𝑣 ′). Note that the condition is
strictly stronger than observably equivalent schedules 𝜎 ≈ℓ 𝜎′

(Definition 5.2), specifically, it enforces that the event type is always
the same even for unobservable events and that assumption steps
are paired with the same assumed formula 𝜌 .

Soundness is characterized with the help of an inductive predi-
cate secure𝑛

ℓ
(𝑃1, tr1, 𝑐,𝑄, tr, 𝐴) which states that the program is safe

to execute, correct, and secure for 𝑛 steps similar to [37, Def. 3] for
SecCSL and its non-relational counterpart from [76] for standard
CSL. In comparison to [37] it additionally tracks alignment between
possible schedules of the execution of 𝑐 , injects assumption steps
into intermediate path conditions, tracks the history trace of events,
and collects audit triples in 𝐴. As such, it encodes all consequences
of extended judgements ⊢ℓ {𝑃1 ★H(tr1)} 𝑐 {𝑄 ★H(𝑡𝑟)} ⊲ 𝐴 to
prove Theorems 5.6 and 6.5 but while this judgement is defined
compositionally over the structure of the program command 𝑐 , pred-
icate secure𝑛

ℓ
(𝑃1, tr1, 𝑐,𝑄, tr, 𝐴) unwinds individual execution steps

linearly. This is the key gap that is bridged in the soundness proof.

Definition B.2 (Secure Executions). Predicate secure is defined
recursively over the counter 𝑛 of remaining steps to assert secure:
• secure0

ℓ
(𝑃1, tr1, 𝑐,𝑄, tr, 𝐴) holds always, i.e., a program is secure

for zero steps.
• secure𝑛+1

ℓ
(𝑃1, tr1, 𝑐,𝑄, tr, 𝐴) holds, if for all possible pairs of first

steps (run 𝐿1, 𝑐1, 𝑠1, ℎ1)
𝜎1−−→ 𝑘2 and (run 𝐿, 𝑐1, 𝑠′1, ℎ

′
1)

𝜎 ′
1−−→ 𝑘′2

starting from states (𝑠1, ℎ1), (𝑠′1, ℎ
′
1) |= 𝑃1★H(𝑡𝑟1)★ invs(𝐿1) we

have
(1) 𝜎1 �ℓ 𝜎′1 are aligned according to Definition B.1, and

Assume but Verify: Deductive Verification of Leaked Information in Concurrent Applications (Extended Version) , ,

void avg_sum_thread() {

while(true) {

struct avg_state * st = avg_lock();

{inv(𝑡𝑟, st) }
{H(tr) ∧ st->count = length(tr) ∧ st->sum = sum(tr) }
int i = avg_get_input();

{H(tr · 𝑖) ∧ st->count = length(tr) ∧ st->sum = sum(tr) }
st->count += 1;

{H(tr · 𝑖) ∧ st->count = length(𝑡𝑟 · 𝑖) ∧ st->sum = sum(tr) }
st->sum += i;

{H(tr · 𝑖) ∧ st->count = length(𝑡𝑟 · 𝑖) ∧ st->sum = sum(tr · 𝑖) }
{inv(𝑡𝑟 · 𝑖, st) }
avg_unlock(st);

}

}

void avg_declass_thread() {

struct avg_state * st = avg_lock();

{inv(𝑡𝑟, st) }
{H(tr) ∧ st->count = length(tr) ∧ st->sum = sum(tr) }
if (st->count >= 6) {

{H(tr) ∧ st->count = length(tr) ∧ st->sum = sum(tr) ∧ sum(tr) ≥ 6}
int avg = st->sum / st->count;

{H(tr) ∧ st->count = length(tr) ∧ st->sum = sum(tr) ∧ sum(tr) ≥ 6 ∧ avg = sum(tr)/length(tr) }
_(assume avg :: low) ⊲{ (𝑃, tr, avg :: low) }
{H(tr) ∧ st->count = length(tr) ∧ st->sum = sum(tr) ∧ sum(tr) ≥ 6 ∧ avg = sum(tr)/length(tr) ∧ avg :: low}
print_average(avg);

{H(tr) ∧ st->count = length(tr) ∧ st->sum = sum(tr) ∧ sum(tr) ≥ 6 ∧ avg = sum(tr)/length(tr) ∧ avg :: low}
}

{H(tr) ∧ st->count = length(tr) ∧ st->sum = sum(tr) }
{inv(𝑡𝑟, st) }
avg_unlock(st);

}

Figure 9: Proof of the example in Fig. 1. The use of the assume statement induces an audit triple (𝑃, tr, avg :: low), where 𝑃 is the

underlined path condition at the point of the assume statement, namely st->count = length(tr) ∧ st->sum = sum(tr) ∧ sum(tr) ≥
6 ∧ avg = sum(tr)/length(tr). The declassification policy 𝜑D { 𝜌D is honored (Definition 6.2) if 𝑃 implies 𝜑D and and 𝑃 ★ 𝜌D
implies the assumption avg :: low. The policy for this example recall is 𝜑D (tr) =̂ length(tr) ≥ 6, and 𝜌D (tr) =̂ sum(tr)/length(tr) ::
low. 𝑃 clearly implies 𝜑D ; moreover, so does 𝑃 ★ 𝜌D imply avg :: low. Thus the example is secure against the declassification

policy, by Theorem 6.5.

(2) the two configurations 𝑘2 and 𝑘′2 arematched, in the sense that
either both are stopped with the same lock-set 𝐿2 or both are
running with identical commands 𝑐2 and lock-set 𝐿2, and

(3) if the execution step was an assumption 𝜌 , 𝐴 must contain a
corresponding audit triple (𝑃 ′1, tr1, 𝜌) for current trace tr1 and
some assertion 𝑃 ′1 that follows from the current path condi-
tion 𝑃1, i.e., 𝑃1 =⇒ 𝑃 ′1 (weakening is allowed and necessary
to validate the consequence rule), and

(4) if 𝑘2 = (stop 𝐿2, 𝑠2, ℎ2) and 𝑘′2 = (stop 𝐿2, 𝑠′2, ℎ
′
2) then either

the step was a violated assumption 𝜌 with 𝑠1, 𝑠′1 ̸ |= 𝜌 or the
postcondition holds (𝑠1, ℎ1), (𝑠′1, ℎ

′
1) |= 𝑄 ★H(tr2) ★ invs(𝐿2)

for some tr2, and
(5) if 𝑘2 = (run 𝑐2, 𝐿2, 𝑠2, ℎ2) and 𝑘′2 = (run 𝑐2, 𝐿2, 𝑠′2, ℎ

′
2) then

either the step was a violated assumption 𝜌 with 𝑠1, 𝑠′1 ̸ |= 𝜌

or some intermediate assertion 𝑃2 holds (𝑠1, ℎ1), (𝑠′1, ℎ
′
1) |=

𝑃2 ★H(tr2) ★ invs(𝐿2) for some tr2 as well as recursively, the
program is secure for the remaining 𝑛 steps from that point
on, i.e., secure𝑛

ℓ
(𝑃2, tr2, 𝑐2, 𝑄, tr, 𝐴).

So far, we have tacitly suppressed the semantic model underlying
the abstract predicateH(tr). It can be explained either by introduc-
ing a constant ghost location tr in heaps, so that (𝑠, ℎ), (𝑠′, ℎ′) |=
H(tr) iff ℎ = [tr ↦→ JtrK𝑠] and ℎ′ = [tr ↦→ JtrK𝑠′] (recall that tr is
an expression and cf. [9, 72]), or alternatively we can interpret tr
in terms of yet another type of actions in the schedule (which we
have done in our Isabelle/HOL proofs).

Lemma B.3. A valid proof using the rules ⊢ℓ {𝑃1★H(tr1)} 𝑐 {𝑄★

H(𝑡𝑟)} ⊲ 𝐴, implies that the program is secure for any number of
steps, i.e., ∀𝑛. secure𝑛

ℓ
(𝑃1, tr1, 𝑐,𝑄, tr, 𝐴).

, , Murray et al.

Proof. By induction on the derivation of ⊢ℓ {𝑃1★H(tr1)} 𝑐 {𝑄★
H(𝑡𝑟)} ⊲𝐴. Structural rules (frame, conseq) and compound state-
ments (if, while, sequential and parallel composition) need an inner
induction on the number of steps𝑛. In ourmechanized development,
each case is formulated as a separate lemma. □

Lemma B.4 (Secure, Lock-step runs). Assume for all 𝑛, that
secure𝑛

ℓ
(𝑃1, tr1, 𝑐,𝑄, tr, 𝐴). For amajor run (run 𝐿, 𝑐, 𝑠, ℎ) 𝜎−→ 𝑘 and a

minor run (run 𝐿, 𝑐, 𝑠′, ℎ′) 𝜎 ′
−−→ 𝑘′ with the same program 𝑐 , lockset 𝐿

and |𝜎 | = |𝜎′ | such that (𝑠, ℎ), (𝑠′, ℎ′) |=ℓ 𝑃1 ★H(tr1)invs(𝐿), we
have
• the two configurations𝑘 and𝑘′ arematched, in the sense that either
both are stopped with the same lock-set 𝐿2 or both are running
with identical commands 𝑐2 and lock-set 𝐿2,

and one of the following is true:
• an assumption has failed at some step 𝑚 < |𝜎 |, i.e., predicate
assumption-failedℓ (𝑚,𝜎, 𝜎′) holds and the two prefix runs given

as (run 𝐿, 𝑐, 𝑠, ℎ)
𝜎 |𝑚+1−−−−−→ 𝑘𝑚+1 and (run 𝐿, 𝑐, 𝑠′, ℎ′)

𝜎 ′
|𝑚+1−−−−−→ 𝑘′

𝑚+1
are characterized as follows

(1) the intermediate configurations 𝑘𝑚+1 and 𝑘′𝑚+1 are matched (cf.
above), and

(2) the schedules are aligned up to and including that step, and
𝜎 |𝑚+1 �ℓ 𝜎

′
|𝑚+1, and

(3) there is an intermediate assertion 𝑃𝑘 and trace expression tr𝑘
so that (𝑃𝑘 , tr𝑘 , 𝜌) ∈ 𝐴, where 𝜎 (𝑘) = 𝜎′ (𝑘) = Assm 𝜌 is the
failed assertion, and 𝑃𝑘 ★H(tr𝑘) ★ invs(𝐿𝑘) holds in the states
of 𝑘𝑚+1 and 𝑘′𝑚+1 for the corresponding lock-set 𝐿𝑘 .

• no assumption has failed and the entire runs are aligned 𝜎 �ℓ
𝜎′, where 𝑘 and 𝑘′ either both stopped and validate postcondi-
tion 𝑄 ★H(tr′) ★ invs(𝐿′) for the some trace expression tr′ and
respective lock-set 𝐿′ of 𝑘 and 𝑘′, or they are both running with the
same residual program 𝑐′ and similarly validate some intermediate
assertion 𝑃 ′ and trace expression tr′ from which 𝑐′ is again secure
for any number of steps, ∀𝑛. secure𝑛

ℓ
(𝑃 ′, tr′, 𝑐′, 𝑄, tr, 𝐴).

Sketch. This lemma is proved by induction on the (locked) steps
of the two executions, unfolding the inductive security property
alongside. □

Lemma B.5. Consider a verified program ⊢ℓ {𝑃1★H(tr1)} 𝑐 {𝑄★

H(tr′)} ⊲𝐴, i.e., ∀𝑛. secure𝑛
ℓ
(𝑃1, tr1, 𝑐,𝑄, tr, 𝐴), a policy 𝐷 that has

been formally audited (Definition 6.2) and a pair of a major run

(run 𝐿1, 𝑐, 𝑠1, ℎ1) 𝜎1−→∗ 𝑘1 and minor run (run 𝐿1, 𝑐, 𝑠′1, ℎ
′
1)

𝜎 ′
1−→∗

𝑘′1 from the precondition (𝑠1, ℎ1), (𝑠′1, ℎ
′
1) |= 𝑃1 ★ invs(𝐿1). Then

each assumption failure at some 𝑚 < |𝜎 | = |𝜎′ | with 𝜎 (𝑚) =

Assm 𝑠𝑚 𝜌 , 𝜎′ (𝑚) = Assm 𝑠′𝑚 𝜌 is paired with an entry with
(𝑃𝑚, tr𝑚, 𝜌) ∈ 𝐴 and intermediate states 𝐿𝑚, 𝑠𝑚, ℎ𝑚, 𝑠′𝑚, ℎ′𝑚 with
(𝑠𝑚, ℎ𝑚), (𝑠′𝑚, ℎ′𝑚) |= 𝑃𝑚 ★ invs(𝐿𝑚), such that the specified traces
match the schedule: Jtr𝑚K𝑠𝑚 = Jtr1K𝑠1 · trace(𝜎 |𝑚) and Jtr𝑚K𝑠′𝑚 =

Jtr1K𝑠′1 · trace(𝜎
′
|𝑚).

Sketch. This lemma is proved by induction on the (locked) steps
of the two executions, unfolding the inductive security property
alongside. □

Theorem 5.6 (Policy-agnostic security guarantee). If ⊢ℓ
{𝑃} 𝑐 {𝑄} then for a major run (run 𝐿, 𝑐, 𝑠, ℎ) 𝜎1−→∗ 𝑘1 the knowledge

gain from one additional step 𝑘1
𝜎2−→ 𝑘2, expressed as the difference

in uncertainty, is bounded by the release condition:

uncertaintyℓ (𝑃, 𝜎1, 𝑐, 𝐿, 𝑠, ℎ) \ uncertaintyℓ (𝑃, 𝜎1 · 𝜎2, 𝑐, 𝐿, 𝑠, ℎ)
⊆ assumed-releaseℓ (𝑃, 𝜎1, 𝑐, 𝐿, 𝑠, ℎ)

Sketch. Unfolding the definitions, we obtain a minor run in the

set difference (run 𝐿, 𝑐, 𝑠′, ℎ′) 𝜎 ′
1−→∗ 𝑘′1 that is still uncertain, i.e.,

with 𝜎1 ≃ℓ 𝜎
′
1, but none of its extensions are. Considering the two

cases from Lemma B.4, noting that 𝑘1 = (run 𝐿, 𝑐1, 𝑠1, ℎ1) must be
running and ⊢ℓ {𝑃1} 𝑐1 {𝑄} for some 𝑃1.
• If this pair of runs already contains a failed assumption, then it
witnesses the release condition, even if the attacker has not been
able to observe any consequence of that fact yet.

• Otherwise, since 𝑘1 produces another step we have a matching
𝑘′1

𝜎2−→ 𝑘′2 (both 𝑘1 and 𝑘′1 are running and the small-step se-
mantics is left-total), and this extension leaks information, i.e.,
𝜎2 ;ℓ 𝜎′2. Applying Lemma B.4 again from 𝑃1 for just that step
produces a contradiction: because we have the stronger condition
𝜎2 �ℓ 𝜎′2 from assumption steps (which are invisible) and for
regular steps (which are proven secure).

□

Theorem 6.5 (Policy-specific security guarantee). For a
verified program ⊢ℓ {𝑃 ★ H(⟨⟩)} 𝑐 {𝑄 ★ H(tr′)} ⊲ 𝐴 and a pol-
icy 𝐷 formally audited according to Definition 6.2 for each major run
(run 𝐿, 𝑐, 𝑠, ℎ) 𝜎1−→∗ 𝑘1 with final step 𝑘1

𝜎2−→ 𝑘2:

assumed-releaseℓ (𝑃, 𝜎, 𝑐, 𝐿, 𝑠, ℎ)
⊆ policy-releaseℓ (D, 𝑃, 𝜎, 𝑐, 𝐿, 𝑠, ℎ)

Sketch. Fix aminor runwith schedule𝜎′ from assumed-release
that has an assumption failure at step with respect to the major run.
By Lemma B.4 this occurs at some point 𝑛 up to which 𝜎1 |𝑛 � 𝜎′1 |𝑛
which is critical for some side-conditions. By LemmaB.5 for tr1 = ⟨⟩,
𝑃1 = 𝑃 , and the runs up to step 𝑛 we obtain an corresponding audit
triple (𝑃2, tr′, 𝜌) for which Definition 6.2 guarantees 𝜑D is implied
by that 𝑃2, but the failed assumption 𝜌 falsifies 𝜌D (contraposition
of the second implication of the audit), and therefore Definition 6.3
is satisfied. □

C PROGRAM SEMANTICS

The single-step operational semantics is defined in Fig. 10; multiple
steps of execution 𝑘

𝜎−→∗ 𝑘′ is defined inductively below. The
assertion semantics are defined in Fig. 3.

𝑘
⟨⟩−→∗ 𝑘

𝑘
𝜎1−→ 𝑘1 𝑘1

𝜎2−→∗ 𝑘2

𝑘
(𝜎1 ·𝜎2)−→ ∗ 𝑘2

Assume but Verify: Deductive Verification of Leaked Information in Concurrent Applications (Extended Version) , ,

𝑠′ = 𝑠 (𝑥 := J𝑒K𝑠)

(run 𝑥 := 𝑒, 𝐿, 𝑠, ℎ)
⟨𝜏 ⟩
−→ (stop 𝐿, 𝑠′, ℎ)

J𝑒K𝑠 ∉ dom(ℎ)

(run 𝑥 := [𝑒], 𝐿, 𝑠, ℎ)
⟨Load J𝑒K𝑠 ⟩−→ (abort)

J𝑒K𝑠 ∈ dom(ℎ) 𝑠′ = 𝑠 (𝑥 := ℎ(J𝑒K𝑠))

(run 𝑥 := [𝑒], 𝐿, 𝑠, ℎ)
⟨Load J𝑒K𝑠 ⟩−→ (stop 𝐿, 𝑠′, ℎ)

J𝑒1K𝑠 ∉ dom(ℎ)

(run [𝑒1] := 𝑒2, 𝐿, 𝑠, ℎ)
⟨Store J𝑒1K𝑠 ⟩−→ (abort)

J𝑒1K𝑠 ∈ dom(ℎ) ℎ′ = ℎ(J𝑒1K𝑠 ↦→ J𝑒2K𝑠)

(run [𝑒1] := 𝑒2, 𝐿, 𝑠, ℎ)
⟨Store J𝑒1K𝑠 ⟩−→ (stop 𝐿, 𝑠, ℎ′)

𝑙 ∈ 𝐿 𝐿′ = 𝐿 \ {𝑙}

(run lock 𝑙, 𝐿, 𝑠, ℎ)
⟨𝜏 ⟩
−→ (stop 𝐿′, 𝑠, ℎ)

𝑙 ∉ 𝐿 𝐿′ = 𝐿 ∪ {𝑙}

(run unlock 𝑙, 𝐿, 𝑠, ℎ)
⟨𝜏 ⟩
−→ (stop 𝐿′, 𝑠, ℎ)

(run 𝑐1, 𝐿, 𝑠, ℎ)
𝜎−→ (abort)

(run 𝑐1; 𝑐2, 𝐿, 𝑠, ℎ)
𝜎−→ (abort)

(run 𝑐1, 𝐿, 𝑠, ℎ)
𝜎−→ (stop 𝐿′, 𝑠′, ℎ′)

(run 𝑐1; 𝑐2, 𝐿, 𝑠, ℎ)
𝜎−→ (run 𝑐2, 𝐿

′, 𝑠′, ℎ′)

(run 𝑐1, 𝐿, 𝑠, ℎ)
𝜎−→ (run 𝑐′1, 𝐿

′, 𝑠′, ℎ′)

(run 𝑐1; 𝑐2, 𝐿, 𝑠, ℎ)
𝜎−→ (run 𝑐′1; 𝑐2, 𝐿

′, 𝑠′, ℎ′)

(run 𝑐1, 𝐿, 𝑠, ℎ)
𝜎−→ (abort)

(run 𝑐1 ∥ 𝑐2, 𝐿, 𝑠, ℎ)
⟨L⟩·𝜎
−→ (abort)

(run 𝑐1, 𝐿, 𝑠, ℎ)
𝜎−→ (stop 𝐿′, 𝑠′, ℎ′)

(run 𝑐1 ∥ 𝑐2, 𝐿, 𝑠, ℎ)
⟨L⟩·𝜎
−→ (run 𝑐2, 𝐿

′, 𝑠′, ℎ′)

(run 𝑐1, 𝐿, 𝑠, ℎ)
𝜎−→ (run 𝑐′1, 𝐿

′, 𝑠′, ℎ′)

(run 𝑐1 ∥ 𝑐2, 𝐿, 𝑠, ℎ)
⟨L⟩·𝜎
−→ (run 𝑐′1 ∥ 𝑐2, 𝐿′, 𝑠′, ℎ′)

if 𝑠 ⊨ 𝑒 then 𝑐′ = 𝑐1 else 𝑐′ = 𝑐2

(run if 𝑒 then 𝑐1 else 𝑐2, 𝐿, 𝑠, ℎ)
⟨𝜏 ⟩
−→ (run 𝑐′, 𝐿, 𝑠, ℎ)

𝑠 ⊭ 𝑒

(run while 𝑒 do 𝑐, 𝐿, 𝑠, ℎ)
⟨𝜏 ⟩
−→ (stop 𝐿, 𝑠, ℎ)

𝑠 ⊨ 𝑒

(run while 𝑒 do 𝑐, 𝐿, 𝑠, ℎ)
⟨𝜏 ⟩
−→ (run 𝑐;while 𝑒 do 𝑐, 𝐿, 𝑠, ℎ)

(run skip, 𝐿, 𝑠, ℎ)
⟨𝜏 ⟩
−→ (stop 𝐿, 𝑠, ℎ) (run assume 𝜌, 𝐿, 𝑠, ℎ)

⟨Assm 𝜌 ⟩
−→ (stop 𝐿, 𝑠, ℎ)

(run output ℓ′ 𝑒𝑣, 𝐿, 𝑠, ℎ)
⟨Out Jℓ ′K𝑠 J𝑒𝑣K𝑠 ⟩−→ (stop 𝐿, 𝑠, ℎ) (run trace 𝑒, 𝐿, 𝑠, ℎ)

⟨Trace J𝑒K𝑠 ⟩−−−−−−−−−−−−→ (stop 𝐿, 𝑠, ℎ)

Figure 10: Small-step operational semantics. Symmetric parallel rules in which 𝑐2 is scheduled producing the event R have been

omitted in the interests of brevity. We write 𝑠 ⊨ 𝑒 when evaluating expression 𝑒 in state 𝑠 and casting the resulting value to a

boolean yields the value true; we write 𝑠 ⊭ 𝑒 otherwise.

	Abstract
	1 Introduction
	2 Motivation and Overview
	3 Threat Model
	4 Background: SecCSL
	4.1 Expressions and Assertions
	4.2 Proof Rules
	4.3 Program Semantics

	5 Policy-Agnostic Guarantee
	6 Conformance with Policies
	7 Case Studies
	7.1 Differentially-Private Location Service
	7.2 Sealed-Bid Auction Server
	7.3 Wordle
	7.4 Private Learning

	8 Conclusion and Related Work
	Acknowledgments
	References
	A Proof of the Motivating Example
	B Proofs of the Main Theorems
	C Program Semantics

